题意是要给n个城市,n个权值
n-1条边 对一个城市u , 有f(u) = ∑ρ(v, u) * p(v)。 ρ(v, u)是u到v的距离,p(v)是v点的权值
也就是f(u)为除u外【每一个城市v 到u的(距离d) *(城市v的权值)】之和
每个城市有一个f(u)值 找出该值最小的城市编号,并输出该值
思路就是先 以城市1为出发点,dfs一遍求城市1【到其他城市的距离*其权值】之和;
我们想象城市之间是一颗树上的不同节点,城市1为根节点,那么 我们还要在dfs1过程记录一下 某个城市的所有下属城市的人数之和(待会要用到)
得到城市1的答案之后,
我们就可由城市1来求 所有与其相邻城市的f(u),设相邻城市为q,i是q城市在vector【1】中的位置,tol是全世界总人数,val是两点之间距离
公式为: ans[q]=ans[1]-(re[q]*mp[1][i].val)+(tol-re[q])*mp[x][i].val;
即由1 可以轻易得到城市q的答案 那么q城市也可以推出所有与之相邻的答案了,dfs2一遍就好了。
PS:据说这个叫树DP
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream&