POJ 1401 -数学规律

本文介绍了一种计算给定正整数n的阶乘(n!)中尾随零的数量的算法。通过分析可知,尾随零的数量由因子5的数量决定,而因子2的数量远超因子5。因此只需统计因子5的个数即可。文章给出的递推公式为 F(n)=n/5+f(n/5)。
摘要由CSDN通过智能技术生成

http://poj.org/problem?id=1401

给一个数n,  求出n! 有多少个后导零

思路:

显然有x个零,表示n!可以 除以 x个 10

也就是 有x 对(5,2)作为因子,显然 这么大的数,2的因子个数一定是比5多得多得多

所以只看有多少个5作为因子就可以了


问题转为  求 N 以内的数的乘积 的 因子5的 个数

递推式就是:F(n) = n/5 + f(n/5)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值