codeforces 533-B Work Group-树DP-

博客主要讨论了如何解决Codeforces上的一道题目,涉及到寻找一个子树,其中每个成员的直接下属数量都是偶数,目标是找到权值最大的集合。博主分享了初始思路的错误,即仅考虑选择偶数个直接子节点,而忽略了可以选择子节点的子孙。通过引入奇偶关系的动态规划(DP)状态转移,博主给出了正确的解题方法,最终得出dp[x][1]为最优解。
摘要由CSDN通过智能技术生成

http://codeforces.com/problemset/problem/533/B


题意:

每个人有一个直接的领导,1是总裁,现在要找一个最大的集合,每个领导领导的人的数量都是偶数,问最大的值是多少。 

给n,n个人

接下来n行 P,x,pi表示该人领导是pi,X表示该人权值为X


求一个子树(集合),里面所有人的下属的个数和都为偶数,求权值最大的一个集合,输出权值:

一开始方向就走错了。。以为是只需要选根节点U的 偶数个儿子节点(我的意思是偶数条直接分支)便可,没考虑到可以直接选U的孙子节点,这样一来就可以选奇数条直接分支了

(也就是,假设U有三个儿子,我开始以为只能选2个合法的儿子,最后发现可以选两个合法的儿子,并且从第三个儿子的子孙里再选偶数个合法子孙)

所以dp应该用奇偶关系来递推比较好

dp[u][0] 从u往下选偶数个合法后代节点的权值和 (必定不选自身,最后是以u的偶数个合法后代节点构成的森林)
dp[u][1] 从u往下选奇数个各法后代节点的权值和 (  最后可能是以u为根的一棵树,或奇数个u的合法后代节点构成的森林 )

每次递归初始化  dp[x][1]=-8223372036854775807; //第一次dp,实际dp[x][1]不存在,所以设为-inf 

int tmp=dp[u][0],tmp2=dp[u][1];
dp[u][0]=max(tmp+dp[v][0],tmp2+dp[v][1]);
dp[u][1]=max(tmp+dp[v][1],tmp2+dp[v][0]);

最后  dp[x][1]=max(dp[x][1],dp[x][0]+tm[x]); 

答案便是dp[x][1]啦。(比dp[x][0]大)


#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;

const double pi=acos(-1.0);
double eps=0.000001; 
int max(int a,int b)
{return a<b?b:a;}
__int64 min(__int64 a,__int64 b)
{return a>b?b:a;}
int max(int a,int b,int c)
{return max(a,max(b,c));}

vector< vector<int> > mp(200005+5);
int tm[200005];
int p;
 __int64 dp[200005][2];
void  dfs(int x)
{ 
	int i;  
	dp[x][1]=-8223372036854775807; //第一次dp,实际dp[x][1]不存在,所以设为-inf 
	for (i=0;i<mp[x].size();i++)
	{
		int v=mp[x][i];
		dfs(v);
		__int64 tmp1=dp[x][0],tmp2=dp[x][1];
		dp[x][0]=max(tmp1+dp[v][0],tmp2+dp[v][1]);
		dp[x][1]=max(tmp2+dp[v][0],tmp1+dp[v][1]);
	}  
	dp[x][1]=max(dp[x][1],dp[x][0]+tm[x]); 
} 
int n;

int main()
{ 
	cin>>n;
	int i;
	int hd=-1;
	for (i=1;i<=n;i++)
	{
		scanf("%d%d",&p,&tm[i]);
		if (p==-1) {hd=i;continue;}
		mp[p].push_back(i);
	} 
	 
	 dfs(hd);
	printf("%I64d\n",dp[hd][1]);
	
	
	return 0;
	
}


第二次写的代码

#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;

const double pi=acos(-1.0);
double eps=0.000001; 

vector<int >mp[200005];
__int64 max(__int64 a,__int64 b)
{return a>b?a:b;}
__int64 dp[200005][2];
__int64 aa[200005];
void dfs(int x)
{
	int i;
	dp[x][0]=0;
	dp[x][1]=-200000000005;
		for (i=0;i<mp[x].size();i++)
		{
			int v=mp[x][i];
			dfs(v);
			__int64 tmp1=dp[x][0],tmp2=dp[x][1];
			dp[x][0]=max(tmp1+dp[v][0],tmp2+dp[v][1]);
			dp[x][1]=max(tmp2+dp[v][0],tmp1+dp[v][1]);
		}

		dp[x][1]=max(dp[x][1],dp[x][0]+aa[x]);
}

int main()
{
	int n;
	cin>>n;
	int i,x,y;
	int rt=0;
	for (i=1;i<=n;i++)
	{
		scanf("%d%d",&x,&aa[i]);
		if (x==-1) rt=i;
		else
			mp[x].push_back(i);
	}
	dfs(rt);
	printf("%I64d\n",max(dp[rt][0],dp[rt][1]));
	
	
	
	
	
	
	
	
	
	
	
	
	return 0;
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值