http://acm.hdu.edu.cn/showproblem.php?pid=4313
题意,给你一个n点,n-1条边的图
给你k个点,
要求删除一些边使得k个点完全不连通
求删除边集的最小价值
又是这种删边的问题,可以逆向地用并查集处理
正向地一条条删边是很麻烦的,如果我们逆过来,从头构图,把边按权值由大到小排序,每次选一条边,看加入 其后【是否导致 K个点间有联通】,若无则可选之,如此重复到最后即可得到 最小价值的 【使得k个点不联通的边集】
合并的时候,若有一方父亲 属于K个点中的点,则优先选其为父亲,便于判断 【是否导致 K个点间有联通】
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;
const double pi=acos(-1.0);
double eps=0.000001;
int fa[100005];
int find(int x)
{
if (fa[x]==x)
return x;
else return fa[x]=find(fa[x]);
}
struct node
{
int x,y,z;
node() {}
node(int a,int b,int c)
{
x=a,y=b,z=c;
}
};
bool cmp(node a,node b)
{
return a.z>b.z;
}
node tm[100005];
int main()
{
int t;
cin>>t;
while(t--)
{
set<int >sb;
sb.clear();
int n,k;
cin>>n>>k;
long long ans=0;
for (int i=0;i<=n;i++) fa[i]=i;
for (int i=1; i<n; i++)
{
scanf("%d %d %d",&tm[i].x,&tm[i].y,&tm[i].z);
ans+=tm[i].z;
}
sort(tm+1,tm+n,cmp);
for (int i=1; i<=k; i++)
{
int tmp;
scanf("%d",&tmp);
sb.insert(tmp);
}
long long sum=0;
for (int i=1; i<n; i++)
{
int fx=find(tm[i].x);
int fy=find(tm[i].y);
if (sb.find(fx)!=sb.end()&&sb.find(fy)!=sb.end()) continue; //必不可选的情况
if (sb.find(fx)!=sb.end()||sb.find(fy)!=sb.end())<span style="white-space:pre"> </span>//选择把父亲为, K个点中的点
{
if (sb.find(fx)!=sb.end())
fa[fy]=fx;
else fa[fx]=fy;
}
else<span style="white-space:pre"> </span>//任意选父亲
{
fa[fx]=fy;
}
sum+=tm[i].z;
}
printf("%lld\n",ans-sum);
}
return 0;
}