hdu-4757-Tree-树链剖分+可持久化字典树

本文介绍了一道HDU 4757的算法题,该题要求在给定的树结构中,对于多次询问,找出从节点x到y路径上与z异或值最大的数。首先,文章提出了将数组问题转化为利用可持久化字典树解决的方法,接着应用树链剖分将树上的路径转化为线性区间问题。最后,通过可持久化字典树处理区间询问,成功解决原问题。作者在实现过程中遇到了一些困难,如字典树的空间开销和智商挑战。
摘要由CSDN通过智能技术生成

http://acm.hdu.edu.cn/showproblem.php?pid=4757



这题就是n个点,一棵树,n-1条边

m次询问,询问为 (x,y,z)问x到y的路径上哪一个数与z异或的值最大


先考虑给一个数组,问你哪个数与Z异或的值最大,做法参考http://blog.csdn.net/viphong/article/details/52167649

就是把数组里的数建一颗trie,然后把Z按二进制取反去trie里尽可能找到与Z的二进制位相反的数,他就是答案


而这题我们先做一次树链剖分,把树上链弄成线性区间,然后问题变成了,任给一个区间,询问区间内哪个数与Z异或值最大,这个问题就变成了 http://blog.csdn.net/viphong/article/details/52167649 这个问题的 区间询问版本,由于字典树的缘故,只能用可持久化结构来维护区间信息,所以要写一个可持久化字典树,至此问题就解决了。

(似乎大家都是求什么lca?


Run IDSubmit TimeJudge StatusPro.IDExe.TimeExe.MemoryCode Len.LanguageAuthor
180218132016-08-10 11:20:54Accepted47571840MS31648K4223 BG++liuyuhong

....字典树开了3倍wa 半天。。。智商感人


#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
typedef long long ll;
const int MAXN = 100000+50;
struct Edge
{
    int to,next;
} edge[MAXN*2];
int head[MAXN],tot;
int top[MAXN];//top[v]表示v所在的重链的顶端节点
int fa[MAXN]; //父亲节点
int deep[MAXN];//深度
int num[MAXN];//num[v]表示以v为根的子树的节点数
int p[MAXN];//p[v]表示v与其父亲节点的连边在线段树中的位置/或v的位置
int fp[MAXN];//和p数组相反
int son[MAXN];//重儿子
int pos;
int id;
int in[MAXN];
int out[MAXN];//
void init()
{
    tot = 0;
    memset(head,-1,sizeof(head));
    pos = 0;
    memset(son,-1,sizeof(son));
}
void addedge(int u,int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}
void dfs1(int u,int pre,int d) //第一遍dfs求出fa,deep,num,son
{
    deep[u] = d;
    fa[u] = pre;
    num[u] = 1;
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].to;
        if(v != pre)
        {
            dfs1(v,u,d+1);
            num[u] += num[v];
            if(son[u] == -1 || num[v] > num[son[u]])
                son[u] = v;
        }
    }
}
void getpos(int u,int sp) //第二遍dfs求出top和p
{
    top[u] = sp;
    p[u] = ++pos;
    fp[p[u]] = u;
    if(son[u]!=-1)
        getpos(son[u],sp);
    for(int i = head[u] ; i != -1; i = edge[i].next)
    {
        int v = edge[i].to;
        if(v != son[u] && v != fa[u])
            getpos(v,v);
    }
    out[u]=pos;
}

const int maxnode = 100005*30;
const int maxn=50+100000;
int root[maxn];
struct PDTrie
{
    int ch[maxnode][2];
    int val[maxnode];//num of enum
    int sz;
    void init()
    {
        sz=0;
        val[0]=0;		//可不需要
        memset(ch[0],0,sizeof(ch[0]));
    }
    int newnode(int v)
    {
        sz++;
        memset(ch[sz],0,sizeof(ch[sz]));
        val[sz]=v;
        return sz;
    }
    int insert(int x,int s )
    {
        int rt=newnode(val[x]+1);
        int u=rt,last=x,n=16,i;
        for (i=0; i<n; i++)
        {
            int c=s&(1<<(15-i));
            c=!!c;
            ch[u][c^1]=ch[last][c^1];
            ch[u][c]=newnode(val[ch[last][c]]+1);
            u=ch[u][c];
            last=ch[last][c];
        }
        return rt;
    }
    int query(int x,int y,int s)	//查找当前单词是否存在,本题用不上
    {
        int ret=0;
        int n=16,i;
        int nex;
        for (i=0; i<n; i++)
        {
            int c=s&(1<<(15-i));
            c=!!c;
            int tmp=val[ch[y][c^1]]-val[ch[x][c^1]];
            if (tmp>0)  c^=1;
            ret|=c<<(15-i);
            y=ch[y][c];
            x=ch[x][c];
        }
        return ret;
    }
    int findsum(int u,int v,int z)//查询u->v链的sum
    {
        int f1=top[u],f2=top[v];
        int tmp=-2e9;
        while(f1!=f2)
        {
            if (deep[f1]<deep[f2])
            {
                swap(f1,f2);
                swap(u,v);
            }
               tmp=max(tmp, z^query(root[p[f1]-1],root[p[u]],z));
            u=fa[f1],f1=top[u];
        }
        if (deep[u]>deep[v] ) swap(u,v);
      return  tmp=max(tmp, z^query(root[p[u]-1],root[p[v]],z)); //若val(u)是u到fu的边权,则用son[u]
    }
};
PDTrie tp;
int a[MAXN];
int main()
{
   //   freopen("in.txt","r",stdin);
    //    freopen("out2.txt","w",stdout);

    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {

        init();
        for (int i=1; i<=n; i++)
            scanf("%d",&a[i]);
        int u,v,c;
        for (int i=1; i<n; i++)
        {
            scanf("%d%d",&u,&v);
            addedge(u,v);
            addedge(v,u);
        }
        dfs1(1,0,0);
        getpos(1,1);
        tp.init();
        root[0]=0;
        for (int i=1; i<=n; i++)
            root[i]=tp.insert(root[i-1],a[fp[i]]);
        for (int i=1; i<=m; i++)
        {
            scanf("%d%d%d",&u,&v,&c);
            printf("%d\n",tp.findsum(u,v,c));
        }
    }

    return 0;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值