缺氧

2015/12/03 Go the extra mile.

uva10883 - Supermean-杨辉三角+log应用

 题意: 给出n个数字, 要求你求出它们的supermean, supermean的定义是: n个数先两两相邻

        求平均值, 那么得到n-1个数, 已知循环做这件事, 直到剩下的数字只有1个


 

可以比较容易推导出  最后的ans= 每一项之和,其中通项为 C【i】*Ai /2^(n-1)

Ci是 C(n-1,i)也就是杨辉三角第n-1行的第i个


由于n太大了,直接算CI和2^n 都是不行的,由于答案是浮点的,我们可以利用log函数降次

根据组合数递推的公式              log_ci=log_ci+log(n-1-i)-log(i+1); 可以累推出ci

计算每一项,则先对其取对数,降次,最后再取回指数。

  if(x>0)
            ans+=   exp(  log_ci+log(x) -log2_n) ;
             else ans-= exp(  log_ci+log(-x) -log2_n) ;


#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;
typedef long long   ll;
const int maxn=490000+5;

int main()
{
    //cout<<log(2.7182818284590452353602874713527)<<endl;
    //  printf("%lf\n",C(5000,3000));
    int t;
    cin>>t;
    int cnt=1;
    while(t--)
    {
        int n;
        scanf("%d",&n);
        double log2_n=(n-1)*log(2.0);
        double ans=0;
        double x;
        double log_ci=log(1);
        for (int i=0; i<n; i++)
        {
            scanf("%lf",&x);
            if(x>0)
            ans+=   exp(  log_ci+log(x) -log2_n) ;
             else ans-= exp(  log_ci+log(-x) -log2_n) ;
             log_ci=log_ci+log(n-1-i)-log(i+1);
        }
        printf("Case #%d: %.3lf\n",cnt++,ans );
    }

    return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/viphong/article/details/52353424
上一篇UVA 11361 - Investigating Div-Sum Property-数位DP
下一篇cf#369-D - Directed Roads-dfs找环
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭