缺氧

2015/12/03 Go the extra mile.

cf#369-D - Directed Roads-dfs找环

http://codeforces.com/contest/711/problem/D


给一个图,n点n边,   问有多少个边集  翻转其方向 后使得整个图不存在任一个有向环。


那么直接dfs找出一个联通分量,然后根据深度判一下环的长度为huan,该联通分量点数为tol

那么答案就是 乘上  (2^huan)-2   +    2^tol ,  环的情况减二是因为 去掉两个怎么翻都是环的情况(正环和反环)


注意预处理一下2的幂,取模,然后就没了。。。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;

const double pi=acos(-1.0);
double eps=0.000001;
typedef long long  ll;
const int N=2*100000+50;
int vis[N];
vector<int > mp[N];
int tol,huan,tmp;
ll mod=1e9+7;
int dep[N];
long long powe_m(long long  a,long long  b )
{
    long long ans=1;
    long long tmp=a;
    while(b!=0)
    {
        if (b&1)
            ans=ans*tmp%mod;
        tmp=tmp*tmp%mod;
        b=b>>1;
    }
    return ans;
}
ll two[N];
void dfs(int x,int h)
{
    tol++;
    vis[x]=1;
    dep[x]=h;
    for (int i=0;i<mp[x].size();i++)
    {
        int v=mp[x][i];
        if (dep[v])
        {
            huan=dep[x]-dep[v]+1;
            break;
        }
        if (vis[v]) break;
        dfs(v,h+1);
    }
    dep[x]=0;
}
int  main()
{
    ll n,m,k;
    cin>>n;
    two[0]=1;
    for (int i=1;i<=n;i++)
        two[i]=two[i-1]*2%mod;
    int x;
    for (int i=1; i<=n; i++)
    {
        scanf("%d",&x);
        mp[i].push_back(x);
    }
    ll ans=1;
    for (int i=1; i<=n; i++)
    {
        if (vis[i] )continue;
        tol=0;
        huan=0;
        dfs(i ,1);
        if(huan )
        ans= ans* ((two[huan]-2+mod)%mod)%mod*two[tol-huan]%mod;
        else
        ans= ans  *two[tol]%mod;
    }
    printf("%lld\n",(ans%mod+mod)%mod);


    return 0;


}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/viphong/article/details/52371516
上一篇uva10883 - Supermean-杨辉三角+log应用
下一篇cf#369-C. Coloring Trees-三维dp
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭