题意:
给出一个图G,给出里面的一颗生成树T,
找出一个割集,只包含T中的一条边,
让你输出边数最小的割集,的边数.
首先我们剖分一下生成树T。
接下来处理G中的其他边,对于这条边X,必然能在T上形成一个环,那么我们给这个环上(其实对于T是一条链)的所有点+1,
代表,如果以这些边的某一条作为我们选中的割集中的边的话,它将必须再删掉这个边X.
最后统计一下T中每条边,如果选择它作为割集的话,这个割集的大小应该是 val+1(本身)
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
typedef long long ll;
const int MAXN = 201324+50;
int n,m;
struct Edge
{
int to,next;
} edge[MAXN*2];
int head[MAXN],tot;
int top[MAXN];//top[v]表示v所在的重链的顶端节点
int fa[MAXN]; //父亲节点
int deep[MAXN];//深度
int num[MAXN];//num[v]表示以v为根的子树的节点数
int p[MAXN];//p[v]表示v与其父亲节点的连边在线段树中的位置
int fp[MAXN];//和p数组相反
int son[MAXN];//重儿子
int pos;
int out[MAXN];//dfs序
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
pos = 0;
memset(son,-1,sizeof(son));
}
void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs1(int u,int pre,int d) //第一遍dfs求出fa,deep,num,son
{
deep[u] = d;
fa[u] = pre;
num[u] = 1;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
}
void getpos(int u,int sp) //第二遍dfs求出top和p
{
top[u] = sp;
p[u] = ++pos;
fp[p[u]] = u;
if(son[u]!=-1)
getpos(son[u],sp);
for(int i = head[u] ; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
out[u]=pos;
}
struct TREE
{
int tree[21234] ;
void init()
{
memset(tree,0,sizeof tree);
}
int lowbit(int x)
{
return x&-x;
}
void add(int x,int value)
{
for (int i=x; i<=n; i=i+lowbit(i))
{
tree[i]+=value;
}
}
int get(int x)
{
int sum=0;
for (int i=x; i; i-=lowbit(i))
{
sum+=tree[i];
}
return sum;
}
void update_edge(int u,int v)//查询u->v链的sum
{
int f1=top[u],f2=top[v];
ll tmp=0;
while(f1!=f2)
{
if (deep[f1]<deep[f2])
{
swap(f1,f2);
swap(u,v);
}
// tmp+=(tmp,update(1,1,pos,p[f1],p[u]));
add(p[f1],1);
add(p[u]+1,-1);
u=fa[f1],f1=top[u];
}
if (deep[u]>deep[v] ) swap(u,v);
// update(1,1,pos,p[son[u]],p[v])); //若val(u)是u到fu的边权,则用son[u]
add(p[son[u]],1);
add(p[v]+1,-1);
}
};
TREE tp;
int main()
{
int cnt=1;
//freopen("in.txt","r",stdin);
int t;
cin>>t;
while(t--)
{
init();
tp.init();
scanf("%d%d",&n,&m);
int u,v;
for (int i=1; i<n; i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
dfs1(1,0,0);
getpos(1,1);
//tp.build(1,pos,1);
int ans=m;
for (int i=1; i<=m-n+1; i++)
{
scanf("%d%d",&u,&v);
tp.update_edge(u,v);
}
for (int i=2; i<=n; i++)
ans=min(ans,tp.get(i)+1);
// for (int i=1;i<=n;i++)
// printf("%d : %d\n",fp[i],tp.get(i));
printf("Case #%d: %d\n",cnt++,ans);
}
return 0;
}