算法中的时间复杂度

概述

程序员写代码过程中总要用到算法,而不同的算法有不同的效率,时间复杂度是用来评估的算法的效率的一种方式。

比如说对于一个功能,可以实现的方法很多种,我们在实现过程中选择效率最佳的方式来实现,它影响了我们在一定的场景下选择的数据结构和算法,比如何时选择使用ArrayList,何时用LinkedList。

本文结构:

概念
    渐进时间复杂度
场景示例
    场景1
    场景2
    场景3
    场景4
推导出时间复杂度
     时间复杂度计算方式
     常数阶
     线性阶
     平方阶
     立方阶
     对数阶

概念

在计算机科学中,时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。
时间复杂度常用大O符号表述。
时间复杂度可被称为是渐近的,即考察输入值大小趋近无穷时的情况。

简单理解就是:

  • 用 “大O” 表示 “时间复杂度”,示例: O(n)
  • 用一个函数表达算法复杂度的值,格式:O( 具体不同的函数 )
  • 它定性的描述“运行时间”
  • 它是渐进的,趋向接近的。

渐进时间复杂度

为便于计算时间复杂度,通常会估计算法的操作单元数量,每个单元运行的时间都是相同的。因此,总运行时间和算法的操作单元数量最多相差一个常量系数。

简化的公式表示: 总运行时间 = 操作次数 * 固定时间的运行单元

而算法有很多种,很难直接比较。我们期望“操作次数”是一个常数,而实际它很难直接用常数表示。于是引入了 渐进时间复杂度,官方的定义如下:

渐进时间复杂度(asymptotic time complexity):
若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。记作 T(n)= O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

渐进时间复杂度用大写O来表示,所以也被称为大O表示法

场景示例

场景1:

一条长16寸的面包,每1天16寸,需要多少天呢?

太简单了,一天。
函数表示: T(n) = 1

场景2:

一条长16寸的面包,每5天吃掉面包剩余长度的一半,那么把面包吃得只剩下1寸,需要多少天呢?

就是数字16不断地除以2,直到等于1?这里要涉及到数学当中的对数,以2位底,16的对数,可以简写为log16。因此,需要 5 X log16 = 5 X 4 = 20 天。
函数表示: T(n) = 5logn。

场景3:

一条长10寸的面包,每3天吃掉1寸,那么吃掉整个面包需要几天?

很简单,即
函数表示: T(n) = 3n。

场景4:

一条长10寸的面包,吃掉第一个一寸需要1天时间,吃掉第二个一寸需要2天时间,吃掉第三个一寸需要3天时间.....每多吃一寸,所花的时间也多一天。那么小吃掉整个面包需要多少天呢?

答案是从1累加到10的总和,也就是55天。即 1+2+3+......+ n-1 + n = (1+n)*n/2 = 0.5n^2 + 0.5n。
函数表示: T(n) = 0.5n^2 + 0.5n。

推导出时间复杂度

推导出时间复杂度呢?有如下几个原则:

(1) 如果运行时间是常数量级,用常数1表示;
(2) 只保留时间函数中的最高阶项;
(3) 如果最高阶项存在,则省去最高阶项前面的系数。

场景1:
T(n) = 1
最高阶项为3n,省去系数3,转化后为:T(n) = O(1)

场景2:
T(n) = 5logn
最高阶项为5logn,省去系数5,转化后为:T(n) = O(logn)

场景3:
T(n) = 3n
最高阶项为3n,省去系数3,转化后为:T(n) = O(n)

场景4:
T(n) = 0.5n^2 + 0.5n
最高阶项为0.5n^2,省去系数0.5,转化后为:T(n) = O(n^2)
备注:^ 符号表示 平方,n^2表示 n的平方

这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就可以得出结论:

O(1)< O(logn)< O(n)< O(n^2)

其实这四种对应的时间复杂度是: 常数阶,对数阶,线性阶,立方阶。

常见时间复杂度还有:常数阶、线性阶、平方阶、立方阶、对数阶、nlog2n阶、指数阶
效率:O(1) > O(log2n)> o(n)> o(nlog2n) > o(n^2) > o(n^3) > o(2^n) > o(n!) > o(n^n)

代码中的时间复杂度

时间复杂度计算方式

举例:计算1+2+3+....+n的和

$sum=0

for($i=1;$i<=$n;$i++){
   $sum+=$i
}

可以看到循环了n次,所以时间复杂度就是O(n)

常数阶 O(1)

function test($n){
    echo $n;
    echo $n;
    echo $n;
}

执行了三次 echo,运行次数很固定,是个常数。那么时间复杂度就是O(3),取为O(1)

线性阶 O(n)

for($i=1;$i<=$n;$i++){
    $sum+=$i
}

执行n 次,时间复杂度就是O(n)

平方阶:o(n2)/o(n3)

$sum=0;
for($i=1;$i<=$n;$i++){
    for($j=1;$j<$n;$j++){
    $sum+=$j
    }
}

两次循环,里面循环执行了n次,外层循环也执行了n次,所以时间复杂度为O(n^2)

立方阶

与上面类似,就是 三个 for 循环

对数阶:O(log2n)

while($n>=1){
    $n=$n/2;
}

即不断除以2,

n          n/2        n/2/2      n/2/2/2    n/2/2/...

规律:n/(2^m)=1;我们需要算出m, 转换成n=2^m,得出m=log2n,所以时间复杂度为O(logn)

END

发布了237 篇原创文章 · 获赞 7 · 访问量 8万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览