LangGraph-agent-天气助手

用于创建agent和多代理工作流 循环(有迭代次数)、可控、持久

安装langgraph包

conda create --name agent python=3.12
conda activate agent
pip install -U langgraph
pip install langchain-openai

设置

windows(>结尾)

setx OPENAI_BASE_URL "https://api.openai.com/v1"
setx OPENAI_API_KEY "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

api_key要去aihubmix上面去找自己的

linux(#结尾)

export OPENAI_BASE_URL="https://api.openai.com/v1"
export OPENAI_API_KEY="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

#示例:langgraph_hello.py
from typing import Literal
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
# pip install langgraph
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode

# 定义工具函数,用于代理调用外部工具
@tool
def search(query: str):
    """模拟一个搜索工具"""
    if "上海" in query.lower() or "Shanghai" in query.lower():
        return "现在30度,有雾."
    return "现在是35度,阳光明媚。"


# 将工具函数放入工具列表
tools = [search]

# 创建工具节点
tool_node = ToolNode(tools)

# 1.初始化模型和工具,定义并绑定工具到模型
model = ChatOpenAI(model="gpt-4o", temperature=0).bind_tools(tools)

# 定义函数,决定是否继续执行
def should_continue(state: MessagesState) -> Literal["tools", END]:
    messages = state['messages']
    last_message = messages[-1]
    # 如果LLM调用了工具,则转到“tools”节点
    if last_message.tool_calls:
        return "tools"
    # 否则,停止(回复用户)
    return END


# 定义调用模型的函数
def call_model(state: MessagesState):
    messages = state['messages']
    response = model.invoke(messages)
    # 返回列表,因为这将被添加到现有列表中
    return {"messages": [response]}

# 2.用状态初始化图,定义一个新的状态图
workflow = StateGraph(MessagesState)
# 3.定义图节点,定义我们将循环的两个节点
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)

# 4.定义入口点和图边
# 设置入口点为“agent”
# 这意味着这是第一个被调用的节点
workflow.set_entry_point("agent")

# 添加条件边
workflow.add_conditional_edges(
    # 首先,定义起始节点。我们使用`agent`。
    # 这意味着这些边是在调用`agent`节点后采取的。
    "agent",
    # 接下来,传递决定下一个调用节点的函数。
    should_continue,
)

# 添加从`tools`到`agent`的普通边。
# 这意味着在调用`tools`后,接下来调用`agent`节点。
workflow.add_edge("tools", 'agent')

# 初始化内存以在图运行之间持久化状态
checkpointer = MemorySaver()

# 5.编译图
# 这将其编译成一个LangChain可运行对象,
# 这意味着你可以像使用其他可运行对象一样使用它。
# 注意,我们(可选地)在编译图时传递内存
app = workflow.compile(checkpointer=checkpointer)

# 6.执行图,使用可运行对象
final_state = app.invoke(
    {"messages": [HumanMessage(content="上海的天气怎么样?")]},
    config={"configurable": {"thread_id": 42}}
)
# 从 final_state 中获取最后一条消息的内容
result = final_state["messages"][-1].content
print(result)
final_state = app.invoke(
    {"messages": [HumanMessage(content="我问的那个城市?")]},
    config={"configurable": {"thread_id": 42}}
)
result = final_state["messages"][-1].content
print(result)

1.LangGraph核心组件:Graph(图)

步骤
1.初始化模型和工具  2.用状态初始化图 3.定义图节点 4.定义入口点和图边 5.编译图 6.执行图

agent为调用的大模型,虚线表示条件边

编译图 执行图

编译出现问题就是边没配置对  执行图就是langGhain的invoke调用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁灵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值