LeetCode123-买卖股票的最佳时机III
题目
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
解法
方法一:
思路:因为是最多完成两笔交易,这个题是121题的一个延伸,可以将这个问题看成将一段时期切成两段看。
先按照121题的第二个方法进行一次遍历,得到只交易一次的最大值,同时也用数组maxPro得到了第i天时的最大值,maxPro[i]代表,到第i天时,能获得的最大值。使用maxPro数组中的值加上[i+1:len]中的最大值,就可以得到两次交易的最大值。
class Solution {
public int maxProfit(int[] prices) {
if(prices.length == 0) return 0;
int len = prices.length;
//一次交易时到第i天时的最大值
int[] maxPro = new int[len];
maxPro[0] = 0;
int max = 0;
int min = prices[0];
for(int i = 1 ; i < len ; ++i){
if(prices[i]<min){
min = prices[i];
}else{
int cur = prices[i]-min;
max = Math.max(max,cur);
maxPro[i] = max;
}
}
//如果一次交易过后,最大值是0,那不用二次交易了
if(max==0) return max;
//第二次交易,是在第一次交易的基础上,找第i天之后的最大值
for(int i = 0 ; i < len - 2; ++i){
int left = maxPro[i];
if(i+1<len){
int minRight = prices[i+1];
for(int j = i + 1; j < len ; ++j){
if(prices[j]<minRight){
minRight = prices[j];
}else{
int cur = prices[j]-minRight;
max = Math.max(max,cur+left);
}
}
}
}
return max;
}
}
方法二:dp未经过优化,使用三维数组
1. 定义状态:
dp一维日期,二维持有状态,0,不持有股票,1持有股票,三维卖出次数:0 ,1,2
dp[i][j][k] 表示:在下标为 i 的这一天,用户手上持股状态为 j 所获得的最大利润,同时在之前和今天已经出售了k次了。
2. DP方程过程:
2.1 第i天不持有股票:
(1)之前从未卖出过:dp[i][0][0] =dp[i-1][0][0]
(2)之前和今天卖出过一次:dp[i][0][1] = Math.max(dp[i-1][0][1],dp[i-1][1 ][0]+price[i])
(3)之前和今天已经卖出过两次:dp[i][0][2] = Math.max(dp[i-1][0][2],dp[i-1][1][1]+price[i])
2.2第i天持有股票
(1)之前从未卖出过:dp[i][1][0]=Math.max(dp[i-1][1][0],dp[i-1][0][0]-price[I])
(2)之前和今天卖出过一次:dp[i][1][1]=Math.max(dp[i-1][1][1],dp[i-1][0][1]-price[I])
(3)之前和今天已经卖出过两次:该情况不存在
3.DP方程初始状态
(1)第一天持有:dp[0][1][?] = -price[0]
(2)第一天不持有:dp[0][1][?] = 0
4.结果
获取最大收益,一定是用户手上不在持有股票,可能交易过一次,也可能交易过两次
Math.max(dp[len-1][0][2],dp[len-1][0][1]);
class Solution {
public int maxProfit(int[] prices) {
int len = prices.length;
if(len < 1) return 0;
int[][][] dp = new int[len][2][3];
dp[0][0][0] = 0;
dp[0][0][1] = 0;
dp[0][0][2] = 0;
dp[0][1][0] = -prices[0];
dp[0][1][1] = -prices[0];
dp[0][1][2] = -prices[0];
for(int i = 1 ; i < len ; ++i){
int cur = prices[i];
dp[i][0][0] = dp[i-1][0][0];
dp[i][0][1] = Math.max(dp[i-1][0][1],dp[i-1][1][0]+cur);
dp[i][0][2] = Math.max(dp[i-1][0][2],dp[i-1][1][1]+cur);
dp[i][1][0] = Math.max(dp[i-1][1][0],dp[i-1][0][0]-cur);
dp[i][1][1] = Math.max(dp[i-1][1][1],dp[i-1][0][1]-cur);
}
return Math.max(dp[len-1][0][2],dp[len-1][0][1]);
}
}
方法三:dp,方法二的优化,使用二维数组
1.状态:0,未交易,1,买入一次,2卖出1次,3买入2次,4卖出2次
- DP公式
dp[i][j]为 用户手上金钱,i是日期,j是状态。
- dp[i][0] = dp[i-1][0]
- dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
- dp[i][2] = Math.max(dp[i-1][2],dp[i-1][1]+prices[i]);
- dp[i][3] = Math.max(dp[i-1][3],dp[i-1][2]-prices[i]);
- dp[i][4] = Math.max(dp[i-1][4],dp[i-1][3]+prices[i]);
class Solution {
public int maxProfit(int[] prices) {
int len = prices.length;
if(len == 0) return 0;
int[][] dp = new int[len][5];
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
for(int i = 1 ; i < len ; ++i){
int cur = prices[i];
dp[i][0] = dp[i-1][0];
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-cur);
dp[i][2] = Math.max(dp[i-1][2],dp[i-1][1]+cur);
dp[i][3] = Math.max(dp[i-1][3],dp[i-1][2]-cur);
dp[i][4] = Math.max(dp[i-1][4],dp[i-1][3]+cur);
}
return Math.max(dp[len-1][2],dp[len-1][4]);
}
}
方法四:方法三的再次优化,使用一维数组
class Solution {
public int maxProfit(int[] prices) {
int len = prices.length;
if(len == 0) return 0;
int[] dp = new int[5];
dp[0] = 0;
dp[1] = -prices[0];
dp[2] = 0;
dp[3] = -prices[0];
dp[4] = 0;
for(int i = 1 ; i < len ; ++i){
int cur = prices[i];
dp[4] = Math.max(dp[4],dp[3]+cur);
dp[3] = Math.max(dp[3],dp[2]-cur);
dp[2] = Math.max(dp[2],dp[1]+cur);
dp[1] = Math.max(dp[1],dp[0]-cur);
}
return Math.max(dp[2],dp[4]);
}
}