Pytorch交叉熵损失函数CrossEntropyLoss报错解决办法

文章介绍了在Pytorch中使用交叉熵损失函数时,需要将输出(output)转换为Float类型,标签(target)转换为Long类型,以避免计算错误。通过`torch.from_numpy()`函数将numpy数组转换为相应的张量类型是解决报错的关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

交叉熵需要传入一个output和一个target。nn.CrossEntropyLoss(output, target)
其中:

output.dtype : torch.FloatTorch
target.dtype : torch.LongTorch

对数据和标签做如下处理:

x = torch.from_numpy(x).float()
target = torch.from_numpy(target).long()

参考:

Pytorch交叉熵损失函数CrossEntropyLoss报错解决办法 - 简书

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值