- 博客(15)
- 收藏
- 关注
原创 torch.Tensor.index_add_函数,pytorch中的tf.unsorted_segment_sum
ref:https://pytorch.org/docs/1.4.0/tensors.html?highlight=index_add_#torch.Tensor.index_add_https://blog.csdn.net/weixin_44289071/article/details/103882658torch.Tensor.index_add_能实现指定行或列的内容相加的功能,类似于tensorflow中tf.unsorted_segment_sum函数,可以用在比如实例分割中进行特征聚
2021-05-10 11:48:59 5884 2
转载 pytorch中的top_K()函数
pytorch中的top_K()函数https://www.jb51.net/article/177713.htm
2021-04-16 16:48:30 417
原创 numpy寻找list或者数组某一维相同元素的索引
问题描述在做检测任务时,想要寻找相同语义类别的所有框的索引。描述框的数组为K*4,其中最后一个维度代表语义类别,目的是找出相同语义类别(即最后一维各种相同元素)的索引。解决方法主要使用一个for循环以及np.argwhere()函数来解决。import numpy as nplist = [1, 2, 3, 4, 2, 2, 3, 1]for i in np.unique(list): idx = np.argwhere(list == i) print('index fo
2020-11-06 21:15:49 4696 2
原创 Pytorch中Tensorboard的使用
SummaryWriter类主要使用SummaryWriter类来进行变量的保存,它可以向指定的文件夹写入事件文件,这个事件文件可以被tensorboard读取。这个类需要传入的主要参数为log_dir和comment,前者设定事件文件的保存路径,后者可以在文件夹名称后添加一些备注,如学习率、batch_size等做一个区分。保存需要可视化的事件文件主要涉及的函数为.add_scalar(),通过这个函数可以传入图片的名称,纵轴数据以及横轴数据。对应的参数名分别为tag、scalar_valu
2020-09-24 16:43:40 2263
原创 python[数据处理]把txt/excel的文件夹名对应的内容复制到一个新的文件夹
问题描述整理数据集,一个大的文件夹A下面有1-100个子文件夹,每个子文件夹里面的图片都属于同一类,另外有一个或多个excel表或者txt文件(每个excel或者txt代表一类)分别注明这类样本对应的文件夹名。目的是把所有同一个类别的图片放到同一个文件夹内。写了一个以下的脚本来实现。实现代码import osimport shutilwith open('./A类.txt', 'r') as f: dic_name_list = f.read().splitlines()# print
2020-09-23 19:43:20 576
原创 linux下复制文件(scp命令使用)
命令如下scp -P 端口号 -r 想要复制的文件夹名 user_name@主机地址:目标路径举个例子:我现在想复制一个scannet文件夹到地址为192.168.1.1地址下36655端口用户名为root的用户下,目的地址为/1home/datasets/# 先切换到scannet所在的上一层文件夹,执行以下命令scp -P 36655 -r scannet root@192.168.1.1:/1home/datasets/...
2020-09-14 20:52:04 448
原创 PyTorch损失函数之交叉熵损失函数nn.CrossEntropyLoss()
PyTorch之nn.CrossEntropyLoss()nn.CrossEntropyLoss()是nn.logSoftmax()和nn.NLLLoss()的整合,可以直接使用它来替换网络中的这两个操作,这个函数可以用于多分类问题。具体的计算过程可以参考官网的公式或者一下这个链接。https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLosshttps://blog.
2020-09-06 13:41:26 29347 9
原创 torch.gather在求单分类任务交叉熵损失时的用法
torch.gather()的用法参考链接:TORCH.GATHER函数参数:输入一个源tensor以及需要对齐的索引以及对齐的维度,返回对齐的结果。例子:import torcht = torch.tensor([[1,2],[3,4]])out = torch.gather(t, 1, torch.tensor([[0,0],[1,0]]))print(out)output:tensor([[1, 1], [4, 3]])需要注意的是输入的索引的维度和tenso.
2020-09-01 15:07:30 597
原创 open3d读取可视化npy文件
open3d不支持npy后缀的文件,仅支持如下格式的文件。图片来源:https://mp.weixin.qq.com/s/NomNV6Yan8K2qisiPhQIRw【解决方法】先用numpy读取这个文件保存为txt格式,在使用open3d读取进行可视化。代码如下:import open3d as o3dimport numpy as npnp.set_printoptions(suppress=True) # 取消默认科学计数法,open3d无法读取科学计数法表示data = np.load
2020-06-25 22:29:25 3703 1
原创 open3d读取npy点云文件
open3d是不能直接读取npy格式的文件的,其仅支持如下6种数据格式。![图片来源](https://img-blog.csdnimg.cn/2020062521480760.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3p5b3VuZzE3,size_16,color_FFFFFF,t_70)npy是python的一种数据格式。可以使用np.
2020-06-25 22:06:36 4449
原创 Linux下软链接的创建和删除
Linux下软链接的创建和删除硬链接现在用的很少,只记录一下软链接1. 创建基本命令 ln -s [被链接文件夹] [链接文件夹] (注意要用绝对路径)举个例子:/tmp路径下有两个文件夹,一个是test,另一个是test_source,test_source里面有一个文件hello.py(执行这个文件可以输出’hello’)。现在要把test链接到test_source。可以使用如下命...
2020-04-20 19:19:50 464
原创 安装Pytorch
在Windows环境下安装PyTorch安装anaconda,参照链接Anaconda入门按照路径Start | Anaconda3 | Anaconda Prompt打开windows下的终端框。将pytorch安装在对应的虚拟环境中便于管理,使用如下命令创建虚拟环境并进入环境。也可以使用Anaconda软件的图形化界面来创建虚拟环境。conda create -n torch py...
2019-12-09 19:54:06 496
原创 PyCharm建立工程(含选Project Interpreters)
最开始的问题是安装了pytorch框架,在终端里面检测一直是显示安装成功的,但在pycharm里面import torch一直报错。基本更换了所有的解释器,折腾了一天发现都不行。最后找到是工程建立的问题。写个帖子规范一下自己建立PyCharm工程。File --New Project --输入工程名(点下面一行那个小三角)–再选择Existing interpreter找到自己的解释器路径...
2019-10-15 11:14:36 1137
原创 一种比较好的描述数组段的方法
说明:比如我要取用长度为32的一维数组,每次取8个(就是分别[0,7] [8,15] [16,23] [24,31]),记下来提醒一下自己。代码可以这样实现:for i in range(0,4) #(0,4是前开后闭)start = (i*BATCH_SIZE) % 32end = start + BATCH_SIZE #此处的BATCH_SIZE应该为7然后[start , end...
2019-10-09 17:41:23 167
原创 python学习笔记
在python学习过程中使用矩阵相乘函数发现无法实现向量和矩阵相乘。报错ValueError: Shape must be rank 2 but is rank 1 for ‘MatMul’ (op: ‘MatMul’) with input shapes: [2], [2,1].查找原因发现相乘的两个矩阵格式不对。import tensorflow as tfx = tf.constan...
2019-10-09 16:36:47 112
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人