/*
开发环境Microsoft Visual Studio 10.0 C++ + openCV 2.4.2 + cmake
关于环境配置可以参考这篇博客 https://blog.csdn.net/qq_28584889/article/details/87914831
*/
#inclued "stdafx.h"
#include <iostream>
#include <bitset>
#include <string>
#include <iomanip>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\imgproc\imgproc.hpp>
#include <opencv2\core\core.hpp>
using namespace std;
using namespace cv;
#define hashLength 64
// 计算8*8图像的平均灰度
float calcAverage(Mat_<uchar> image, const int &size){
float sum = 0;
for(int i = 0 ; i < size; i++){
for(int j = 0; j < size; j++){
sum += image(i, j);
}
}
return sum/(size*size);
}
/* 计算hash值
image:8*8的灰度图像
size: 图像大小 8*8
ahahs:存放64位hash值
averagePix: 灰度值的平均值
*/
void fingerPrint(Mat_<uchar> image, const int &size, bitset<hashLength> &ahash, const float &
openCV与C++的图像识别(一)——aHash
最新推荐文章于 2024-09-18 12:00:01 发布
本文介绍了使用OpenCV和C++进行图像识别的基础知识,聚焦于aHash算法。通过计算汉明距离,aHash被用于简易的图像相似度比较,但其精度较低。
摘要由CSDN通过智能技术生成