GCD & LCM (数学基础)

Given x and y (2 <= x <= 100,000, 2 <= y <= 1,000,000), you are to count the number of p and q such that:

1) p and q are positive integers;

2) GCD(p, q) = x;

3) LCM(p, q) = y.

input

There are multiple test cases, each case contains two integers x and y, one line for each test case.

output'

Number of pairs of p and q.

sample input

3 60

sample output

4


题目大意:就是找出p*q=x*y,pq的对数。
用一个公式很好:(a/gcd )*(b/gcd)= lcm/gcd(其实是百度的)
这样子把lcm的数量级降下来了。
而且左边2块互质,这样子递归求解最大公约数时的层次走少了好几步。不容易超时,一开始超时到绝望。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值