python散列表实现查找,使用了多种算法并测试对比进行了性能分析(查找效率) 本章是填补之前文章的坑,对哈希算法进行了实现,使用了平方取中法/除留余数法进行哈希映射,使用开放地址与公共溢出区解决冲突,同时对不同方法进行了性能分析对比,最后进行了总结。
—篇文章让你整体了解数据结构《图》,千字超详细总结. 本章主要介绍了图这个数据结构的相关知识,包含图的基本概念及其关键词、使用不同的数据结构去存储图,算法包括图的遍历、图的拓扑排序、图的最小生成树算法。
-篇文章让你彻底理解数组及其扩展的数据结构,快速转置算法等,千字超详细总结. 本章主要介绍数组基本概念及其扩展,二维数组的特殊矩阵:对称矩阵、三角矩阵、稀疏矩阵、十字链表等存储解耦;然后介绍并实现了稀疏矩阵的快速转置算法。
一篇文章带你彻底理解运用栈和队列,超详细千字总结对比. 本章主要介绍并用cpp代码从零实现了栈和队列两个数据结构,同时引出了递归以及栈帧(函数调用)的介绍,以及对栈和队列的相关经典问题的解决,如运算符优先数法、地图四染色、子集划分问题等。
—篇文章带你彻底理解线性表,超详细千字总结对比. 本章将详细地介绍线性表,包含线性存储和链式存储,同时介绍了抽象数据类型(ADT),并且使用cpp代码结合理论进行讲解,最后也附上了一些线性表相关的经典题型以便读者能理解线性表的作用以及能运用线性表。
三个例子理解动态规划(背包(基本、优化时间、优化空间),币值最大化,找零问题) 动态规划综述可分为多个相关子问题,子问题的解可以被重复使用(下方例子中是F数组与value数组来保留子问题解的),这也是相比于递归暴力求解效率提高的关键,下方前两个例子会简单比较效率,第二个例子由于数据不具代表性,所以有所差异动态规划的关键就是如何根据条件从上一个子问题的最优解到该现状的途径(写出递推关系)然后该途径会有很多种再根据问题通过min或max求得哎现状的最优解,该现状当然也又有可能出现在之后现状的子问题当中写出初始条件(之前自己理解的误区)在理解中不要仅仅注意到递推关系,比如背包问题
python实现八大排序算法及性能分析(比较次数与移动次数分析) Libarayimport numpy as npimport pandas as pdfrom tqdm import tqdm数据生成test_50000 = np.random.randint(0, 100000, (50000))print("test_50000, len:%d, test_50000[1]=%d"%(len(test_50000),test_50000[1]))test_100000 = np.random.randint(0, 200000, (10000
使用散列表进行查找【查找关键词:电话号码,名称】【平方取中法,除留余数法】【开放地址探测法,公共溢出区法】【计算ASL】 Libraryimport pandas as pdimport numpy as npimport time读取数据df = pd.read_excel('重庆市印刷和记录媒介复制业754.xlsx')df.dropna(axis=0, how='any') # 去除非数print("表长为:", len(df))df.head()表长为: 754 ID 企业名称 电话 企业地址
使用anaconda中的Prompt配置虚拟环境的常用命令; 因为自己目前也记不到这么多命令,每次去配环境的时候都是问度娘复制粘贴,所以就总结了一下常用的conda命令,方便用的时候直接复制;参考链接:1.https://blog.csdn.net/qq_45855805/article/details/102979213 2.https://blog.csdn.net/qinglingls/article/details/89363368 3.https://blog.csdn.ne...
VSCODE的pylint忽略其规范错误,但运行没错;torch.tensor is not callable 在VSCODE中使用torch.tensor报如下错误,最开始以为是我自己写代码的问题后面测试了一下最简单的程序,发现是能运行的在网上查了一下应该是VSCODE的pylint代码规范的问题,不会影响结果的,不过确实是太丑了这个红色波浪线于是找了一下方法,可以在setting.json文件中的 "python.linting.pylintArgs": 添加如下字段:,"--disable-msg=not-callable"它这个意思就是你想要的忽略的报错问题,not-call...