电磁场与电磁波 复习(1-2)

第一章 矢量分析

1.0 重点

  • 梯度
  • 散度
  • 旋度
  • 亥姆霍兹:知道就行

1.3 标量场的梯度 (用于标量场)

  • 梯度定义:数值为方向导数最大值,方向为最大方向导数所指方向

方向导数:

  • 标量场中一点 M M M沿方向 l l l方向上场的变化率 ∂ u ∂ l ∣ M 0 = lim ⁡ Δ l → 0 u ( M ) − u ( M 0 ) Δ l \left.\frac{\partial u}{\partial l}\right|_{M_0} = \lim\limits_{\Delta l \to 0}\frac{u(M)-u(M_0)}{\Delta l} luM0=Δl0limΔlu(M)u(M0)
  • 方向导数的计算公式 ∂ u ∂ l = ∂ u ∂ x cos ⁡ α + ∂ u ∂ y cos ⁡ β + ∂ u ∂ z cos ⁡ γ \frac{\partial u}{\partial l} = \frac{\partial u}{\partial x}\cos\alpha + \frac{\partial u}{\partial y}\cos\beta + \frac{\partial u}{\partial z}\cos\gamma lu=xucosα+yucosβ+zucosγ
  • 表达式 g r a d    u = ( e x ∂ ∂ x + e y ∂ ∂ x + e z ∂ ∂ x ) u = e x ∂ u ∂ x + e y ∂ u ∂ x + e z ∂ u ∂ x = ▽ u grad\;u = \left(e_x\frac{\partial}{\partial x} + e_y\frac{\partial}{\partial x} + e_z\frac{\partial}{\partial x}\right)u = e_x\frac{\partial u}{\partial x} + e_y\frac{\partial u}{\partial x} + e_z\frac{\partial u}{\partial x} = \triangledown u gradu=(exx+eyx+ezx)u=exxu+eyxu+ezxu=u
  • 梯度运算基本公式
    { ▽ C = 0 ▽ ( C u ) = C ▽ u ▽ ( u ± v ) = ▽ u ± ▽ v ▽ ( u v ) = u ▽ v + v ▽ u ▽ f ( u ) = f ′ ( u ) ▽ u \left\{ \begin{array}{lr} \triangledown C = 0\\\triangledown(Cu) = C\triangledown u\\\triangledown(u\pm v)=\triangledown u \pm \triangledown v \\\triangledown(uv)=u\triangledown v+v\triangledown u\\\triangledown f(u)=f'(u)\triangledown u \end{array} \right. C=0(Cu)=Cu(u±v)=u±v(uv)=uv+vuf(u)=f(u)u

1.4 矢量场通度与散度(用于矢量场)

  • 散度定义:反应场域中每一点的通量特性

通量

  • 定义:用于描述矢量场在一定的空间面积内,场的大小或一些性质 Ψ = ∫ S F ⋅ d S = ∫ S F ⋅ e n d S \varPsi = \int_S F \cdot dS = \int_S F \cdot e_n dS Ψ=SFdS=SFendS
    若为闭合曲面则为:
    Ψ = ∮ S F ⋅ d S = ∮ S F ⋅ e n d S \varPsi = \oint_S F \cdot dS = \oint_S F \cdot e_n dS Ψ=SFdS=SFendS
  • 散度图解:在这里插入图片描述

  • 计算式: d i v    F = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z = ( e x ∂ ∂ x + e y ∂ ∂ z + e z ∂ ∂ z ) ⋅ ( e x F x + e y F y + e z F z ) = ▽ ⋅ F div\;F = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \\= \left(e_x\frac{\partial}{\partial x} + e_y\frac{\partial}{\partial z} + e_z\frac{\partial}{\partial z}\right)\cdot(e_xF_x + e_yF_y + e_zF_z) = \triangledown \cdot F divF=xFx+yFy+zFz=(exx+eyz+ezz)(exFx+eyFy+ezFz)=F

  • 散度定理:面积分和体积分的相互转化
    ∫ V ▽ ⋅ F d V = ∮ S F ⋅ d S \int_V \triangledown \cdot F dV = \oint_S F \cdot dS VFdV=SFdS

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zgTN1kYj-1588699555378)(https://i.imgur.com/7r4Xiwh.png)]

  • 散度的基本公式
    { ▽ ⋅ C ⃗ = ▽ ⋅ C ⃗ = 0    ( C 为 常 矢 量 ) ▽ ⋅ ( C ⃗ f ) = C ⃗ ⋅ ▽ f ▽ ⋅ ( k F ⃗ ) = f ▽ ⋅ F ⃗    ( k 为 常 量 ) ▽ ⋅ ( f F ⃗ ) = f ▽ ⋅ F ⃗ + F ⃗ ⋅ ▽ f ▽ ⋅ ( F ⃗ ± G ⃗ ) = ▽ ⋅ F ⃗ ± ▽ ⋅ G ⃗ \left\lbrace \begin{array}{lr} \triangledown \cdot \vec{C} = \triangledown \cdot \vec{C} = 0 \;(C为常矢量)\\ \triangledown \cdot (\vec{C}f) = \vec{C}\cdot \triangledown f\\ \triangledown \cdot (k\vec{F}) = f\triangledown \cdot \vec{F}\;(k为常量)\\ \triangledown \cdot (f\vec{F})=f\triangledown \cdot \vec{F}+\vec{F}\cdot\triangledown f\\ \triangledown\cdot(\vec{F}\pm\vec{G}) = \triangledown \cdot \vec{F}\pm\triangledown \cdot \vec{G} \end{array} \right. C =C =0(C)(C f)=C f(kF )=fF (k)(fF )=fF +F f(F ±G )=F ±G

1.5 矢量场环流与旋度(用于矢量场)

  • 旋度定义:其方向为 M M M点旋度取最大值的面元法线方向,大小等于环流面密度最大值

环流(标量)

  • 环流定义:矢量场    F    \;F\; F沿场中的一条闭合路径    C    \;C\; C的曲线积分
    定义式:
    Γ = ∮ C F ⋅ d l \Gamma = \oint_C F \cdot dl Γ=CFdl
  • 漩涡源:环流不等于0,场中则有产生改矢量场的源,其既不发出又不汇聚矢量线
  • 环流面密度(标量):用来分析每一点附近的环流状态(可以类比方向导数)
       d S    \;dS\; dS的法线    e n    \;e_n\; en方向上的环流面密度为:
    r o t    F = lim ⁡ Δ S → 0 ∮ C F ⋅ d l Δ S rot\; F = \lim\limits_{\Delta S \to 0}\frac{\oint_CF\cdot dl}{\Delta S} rotF=ΔS0limΔSCFdl
  • 定义式:其中    n    \;n\; n即为    e n    \;e_n\; en
    r o t    F = n    lim ⁡ Δ S → 0 1 Δ S ∮ C F ⋅ d l    ∣ m a x rot \; F = \left.n \; \lim\limits_{\Delta S \to 0}\frac{1}{\Delta S}\oint_CF\cdot dl\;\right|_{max} rotF=nΔS0limΔS1CFdlmax

  • 旋度计算式:
    r o t    F = ( e x ∂ ∂ x + e y ∂ ∂ y + e z ∂ ∂ z ) × ( e x F x + e y F y + e z F z ) = ▽ × F rot\;F=\left(e_x\frac{\partial}{\partial x}+e_y\frac{\partial}{\partial y}+e_z\frac{\partial}{\partial z}\right)\times (e_x F_x + e_y F_y + e_z F_z) = \triangledown \times F rotF=(exx+eyy+ezz)×(exFx+eyFy+ezFz)=×F
    即:
    ∣ e x e y e z ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F x F x ∣ \left|\begin{array}{cccc} e_x & e_y & e_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ F_x & F_x & F_x \end{array}\right| exxFxeyyFxezzFx

  • 斯托克斯定理(类比高斯定理):
    ∫ S ▽ × F ⋅ d S = ∮ C F ⋅ d l \int_S \triangledown \times F \cdot dS = \oint_CF\cdot dl S×FdS=CFdl

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AIeZh6Rf-1588699555382)(https://i.imgur.com/1uiPCUm.png)]

  • 旋度的有关公式
    { ▽ × ( ⃗ C ) = 0 ▽ × ( C ⃗ f ) = ▽ f × C ⃗ ▽ ( F ⃗ ± G ⃗ ) = f ▽ × F ⃗ ± ▽ × G ⃗ △ ⋅ ( F ⃗ × G ⃗ ) = G ⃗ ⋅ ▽ × F ⃗ − F ⃗ ⋅ ▽ × G ⃗ ▽ ⋅ ( ▽ × F ⃗ ) ≡ 0      矢 量 场 的 旋 度 的 散 度 恒 为 零 ▽ × ( ▽ u ) ≡ 0      标 量 场 的 旋 度 恒 为 零 \left\{ \begin{array}{lr} \triangledown\times\vec(C)=0 \\ \triangledown\times(\vec{C}f) = \triangledown f\times\vec{C}\\ \triangledown(\vec{F}\pm\vec{G})=f\triangledown\times\vec{F}\pm \triangledown \times\vec{G}\\ \triangle\cdot(\vec{F}\times\vec{G})=\vec{G}\cdot\triangledown \times \vec{F}-\vec{F}\cdot\triangledown\times\vec{G}\\ \triangledown\cdot(\triangledown\times\vec{F})\equiv 0\;\;矢量场的旋度的散度恒为零\\ \triangledown\times(\triangledown u)\equiv 0\;\;标量场的旋度恒为零 \end{array} \right . ×( C)=0×(C f)=f×C (F ±G )=f×F ±×G (F ×G )=G ×F F ×G (×F )0×(u)0

1.8 亥姆霍兹定理

  • 亥姆霍兹定理:在有限区域内,矢量场由它的散度散度、旋度、边界条件唯一的确定

    亥姆霍兹定理说明:在无界空间区域,矢量场可以由其散度及旋度确定

第二章 电磁场的基本规律

2.0 重点

  • 电荷守恒定理:内容知道
  • 真空中经典场基本规律:电场强度计算
  • 磁场计算:利用散度定理
  • 媒质:电位移和电场之间的关系、磁场和磁感应强度的关系
  • 系数的运用:介电常数、磁道率、电导率
  • 感性电动势的计算
  • 麦克斯韦方程:积分形式、微分形式
  • 电磁场边界条件:知道边界形式、电磁场边界条件的一般形式

2.1 电荷守恒定律(电流连续性方程)

  • 电荷守恒定律:

电荷既不能被创造,也不能被消灭,只能从物体的一部分转移到另一部分,或者从一个物体转移到另一个物体。

  • 电流连续性方程:
    (流出闭曲面 S S S的电流等于体积 V V V内单位所减少的电荷)

积 分 形 式      ∮ S J ⃗ ⋅ d S ⃗ = − d q d t = − d ∫ V ρ d V d t 微 分 形 式      ▽ ⋅ J ⃗ = − ∂ ρ ∂ t 积分形式\;\;\oint_S\vec{J}\cdot d\vec{S}=-\frac{dq}{dt} =-\frac{d\int_V\rho dV}{dt}\\ 微分形式\;\;\triangledown \cdot\vec{J}=-\frac{\partial \rho}{\partial t} SJ dS =dtdq=dtdVρdVJ =tρ

  • 恒定电流的连续性方程:
    (恒定电流是无源场,电流线是连续的闭合曲线,既无起点也无终点)

∂ ρ ∂ t = 0        ⇒ ▽ ⋅ J ⃗            ∮ S J ⃗ ⋅ d S ⃗ = 0 \frac{\partial \rho}{\partial t}=0\;\;\;\Rightarrow\triangledown\cdot\vec{J}\;\;\;\;\;\oint_S\vec{J}\cdot d\vec{S}=0 tρ=0J SJ dS =0

2.2 真空中电磁场的基本规律

  • 电荷分布
    • 电荷体密度
      q = ∫ V ρ V ( r ⃗ ) d V q =\int_V\rho_V(\vec{r})dV q=VρV(r )dV
    • 电荷面密度
      q = ∫ S ρ S ( r ⃗ ) d S q=\int_S\rho_S(\vec{r})dS q=SρS(r )dS
    • 电荷线密度
      q = ∫ C ρ l ( r ⃗ ) d l q=\int_C\rho_l(\vec{r})dl q=Cρl(r )dl
    • 点电荷在空间中的密度
      q ( r ⃗ ) = q δ ( r ⃗ − r ′ ⃗ ) q(\vec{r})=q\delta(\vec{r}-\vec{r'}) q(r )=qδ(r r )
  • 电流与电流密度
    • 电流:
      i = lim ⁡ Δ t → 0 △ q △ t = d q d t i=\lim\limits_{\Delta t \to 0}\frac{\triangle q}{\triangle t}=\frac{dq}{dt} i=Δt0limtq=dtdq
    • 电流密度:

e n {e_n} en为正电荷流动的方向

J ⃗ = e n ⃗ lim ⁡ Δ S → 0 Δ i Δ S = e n ⃗ d i d S \vec{J}=\vec{e_n}\lim\limits_{\Delta S \to 0}\frac{\Delta i}{\Delta S}=\vec{e_n}\frac{di}{dS} J =en ΔS0limΔSΔi=en dSdi

  • 库伦定律:
    真空中电荷    q 1    \;q_1\; q1对电荷    q 2    \;q_2\; q2的作用力
    F 12 ⃗ = e R ⃗ q 1 q 2 4 π ε 0 R 12 2 ⃗ = q 1 q 2 R 12 ⃗ 4 π ε 0 R 12 3 ⃗ \vec{F_{12}}=\vec{e_R}\frac{q_1q_2}{4\pi\varepsilon_0\vec{R^2_{12}}}=\frac{q_1q_2\vec{R_{12}}}{4\pi\varepsilon_0\vec{R^3_{12}}} F12 =eR 4πε0R122 q1q2=4πε0R123 q1q2R12

  • 电场强度

    • 真空中静电荷    q    \;q\; q激发的电场
      E ⃗ ( r ⃗ ) = q R ⃗ 4 π ε 0 R 3 ⃗ \vec{E}(\vec{r})=\frac{q\vec{R}}{4\pi\varepsilon_0\vec{R^3}} E (r )=4πε0R3 qR
    • 体密度为    ρ ( r ⃗ )    \;\rho(\vec{r})\; ρ(r )的体分布电荷的电场强度
      E ⃗ ( r ⃗ ) = ∑ i = 1 ρ ( r i ′ ⃗ ) △ V i R i ⃗ 4 π ε 0 R i 3 = 1 4 π ε 0 ∫ V ρ ( r ′ ⃗ ) R ⃗ R 3 d V ′ \vec{E}(\vec{r})=\sum_{i=1}\frac{\rho(\vec{r'_i})\triangle V_i\vec{R_i}}{4\pi\varepsilon_0 R^3_i}\\ =\frac{1}{4\pi\varepsilon_0}\int_V\frac{\rho(\vec{r'})\vec{R}}{R^3}dV' E (r )=i=14πε0Ri3ρ(ri )ViRi =4πε01VR3ρ(r )R dV
    • 面密度为    ρ S ( r ⃗ )    \;\rho_S(\vec{r})\; ρS(r )的面分布电荷的电场强度
      E ⃗ ( r ⃗ ) = 1 4 π ε 0 ∫ s ρ S ( r ′ ⃗ ) R ⃗ R 3 d S ′ \vec{E}(\vec{r})=\frac{1}{4\pi\varepsilon_0}\int_s\frac{\rho_S(\vec{r'})\vec{R}}{R^3}dS' E (r )=4πε01sR3ρS(r )R dS
    • 线密度为    ρ l ( r ⃗ )    \;\rho_l(\vec{r})\; ρl(r )的面分布电荷的电场强度
      E ⃗ ( r ⃗ ) = 1 4 π ε 0 ∫ s ρ l ( r ′ ⃗ ) R ⃗ R 3 d l ′ \vec{E}(\vec{r})=\frac{1}{4\pi\varepsilon_0}\int_s\frac{\rho_l(\vec{r'})\vec{R}}{R^3}dl' E (r )=4πε01sR3ρl(r )R dl
    • 无限长直导线的电场强度
      E ρ = ρ l 2 π ε 0 ρ E_\rho=\frac{\rho_l}{2\pi\varepsilon_0\rho} Eρ=2πε0ρρl
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-F2SG1z1Q-1588699555388)(https://i.imgur.com/IZVEiPW.png)]
  • 静电场的散度和旋度

    • 静电场散度与高斯定理

      • 微分形式
        ▽ ⋅ E ⃗ ( r ⃗ ) = ρ ( r ⃗ ) ε 0 \triangledown \cdot\vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_0} E (r )=ε0ρ(r )
      • 积分形式
        ∮ S E ⃗ ( r ⃗ ) ⋅ d S ⃗ = 1 ε 0 ∫ V ρ ( r ⃗ ) d V \oint_S\vec{E}(\vec{r})\cdot d\vec{S}=\frac{1}{\varepsilon_0}\int_V\rho(\vec{r})dV SE (r )dS =ε01Vρ(r )dV

      高斯定理表明:静电场是有源场,电场线起始于正电荷,终止于负电荷

    • 静电场旋度与环路定理

      • 微分形式
        ▽ × E ⃗ ( r ⃗ ) = 0 \triangledown\times\vec{E}(\vec{r})=0 ×E (r )=0
      • 积分形式
        ∮ C E ⃗ ( r ⃗ ) ⋅ l ⃗ = 0 \oint_C\vec{E}(\vec{r})\cdot\vec{l}=0 CE (r )l =0

      环路定理表明:静电场是无旋场,是保守场,电场力做工与路径无关

  • 真空中恒定磁场的基本规律

    • 安培定律
      F 12 ⃗ = μ 0 4 π ∫ C 2 ∫ C 1 I 2 d l 2 ⃗ × ( I 1 d l 1 ⃗ × R 12 ⃗ ) R 12 3 F 12 ⃗ = ∮ C 2 I 2 d l 2 ⃗ × ( μ 0 4 π ∮ C 1 I 1 d l 1 ⃗ × R 12 R 12 3 ) = ∮ C 2 I 2 d l 2 ⃗ × B 1 ⃗ ( r 2 ⃗ ) 其 中 : B 1 ⃗ ( r 2 ⃗ ) = μ 0 4 π ∮ C 1 I 1 d l 1 ⃗ × R 12 ⃗ R 12 3 \vec{F_{12}}=\frac{\mu_0}{4\pi}\int_{C_2}\int_{C_1}\frac{I_2d\vec{l_2}\times(I_1d\vec{l_1}\times\vec{R_{12}})}{R^3_{12}}\\ \vec{F_{12}}=\oint_{C_2}I_2d\vec{l_2}\times(\frac{\mu_0}{4\pi}\oint_{C_1}\frac{I_1d\vec{l_1}\times{R_{12}}}{R^3_{12}}) \\ =\oint_{C_2}I_2d\vec{l_2}\times\vec{B_1}(\vec{r_2})\\ 其中: \vec{B_1}(\vec{r_2})=\frac{\mu_0}{4\pi}\oint_{C_1}\frac{I_1d\vec{l_1}\times\vec{R_{12}}}{R^3_{12}} F12 =4πμ0C2C1R123I2dl2 ×(I1dl1 ×R12 )F12 =C2I2dl2 ×(4πμ0C1R123I1dl1 ×R12)=C2I2dl2 ×B1 (r2 )B1 (r2 )=4πμ0C1R123I1dl1 ×R12
  • 电磁感性强度

    • 任意回路    C    \;C\; C
      B ⃗ ( r ⃗ ) = μ 0 4 π ∮ C I d l ′ ⃗ × ( r ⃗ − r ′ ⃗ ) ∣ r ⃗ − r ′ ⃗ ∣ 3 = μ 0 4 π ∮ C I d l ′ ⃗ × R ⃗ R 3 \vec{B}(\vec{r})=\frac{\mu_0}{4\pi}\oint_C\frac{Id\vec{l'}\times(\vec{r}-\vec{r'})}{\left|\vec{r}-\vec{r'}\right|^3}=\frac{\mu_0}{4\pi}\oint_C\frac{Id\vec{l'}\times\vec{R}}{R^3} B (r )=4πμ0Cr r 3Idl ×(r r )=4πμ0CR3Idl ×R
    • 体电流
      B ⃗ ( r ⃗ ) = μ 0 4 π ∮ V J ⃗ ( r ′ ⃗ ) × R ⃗ R 3 d V ′ \vec{B}(\vec{r})=\frac{\mu_0}{4\pi}\oint_V\frac{\vec{J}(\vec{r'})\times\vec{R}}{R^3}dV' B (r )=4πμ0VR3J (r )×R dV
    • 面电流
      B ⃗ ( r ⃗ ) = μ 0 4 π ∮ S J S ⃗ ( r ′ ⃗ ) × R ⃗ R 3 d S ′ \vec{B}(\vec{r})=\frac{\mu_0}{4\pi}\oint_S\frac{\vec{J_S}(\vec{r'})\times\vec{R}}{R^3}dS' B (r )=4πμ0SR3JS (r )×R dS
    • 无限长直导线的电场强度
      B ⃗ = e ϕ ⃗ μ 0 I 2 π a \vec{B}=\vec{e_{\phi}}\frac{\mu_0I}{2\pi a} B =eϕ 2πaμ0I[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l0qYg4aE-1588699555393)(https://i.imgur.com/Dwj7jmn.png)]
  • 恒定磁场的散度和旋度

    • 恒定磁场的散度和磁通连续性原理
      • 微分形式
        ▽ ⋅ B ⃗ ( r ⃗ ) = 0 \triangledown\cdot\vec{B}(\vec{r})=0 B (r )=0

        磁通连续性原理表明:恒定磁场是无源场,磁场线是无起点和终点的闭合曲线

      • 积分形式
        ∮ S B ⃗ ( r ⃗ ) ⋅ d S ⃗ = 0 \oint_S\vec{B}(\vec{r})\cdot d\vec{S}=0 SB (r )dS =0

        安培环路定理表明: 恒定磁场是有旋场,是非保守场、电流是磁场的旋涡源

2.4 媒质的电磁特性

  • 媒介质对电磁场的响应可分为三种:极化、磁化、传导
    分别对应的参数是:介电常数    ε    \;\varepsilon\; ε、磁道率    μ    \;\mu\; μ、导电率    σ    \;\sigma\; σ
2.4.1 极化
  • 电介质的极化

    • 定义:在电场作用下,介质中有极分子的束缚电荷发生位移,有极分子的固有电偶极矩的取向趋于电场方向。
    • 图解:
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5nqLfX7Y-1588699555398)(https://i.imgur.com/odOP3s9.png)]

    通常有极分子叫取向极化,无极分子叫位移极化

  • 极化强度矢量    P ⃗ ( C / m 2 )    \;\vec{P}(C/m^2)\; P (C/m2)

    • 物理意义:单位体积内分子电偶极矩的矢量和
    • P ⃗ = χ e ε 0 E ⃗ \vec{P} = \chi_e\varepsilon_0\vec{E} P =χeε0E

      χ e    \chi_e\; χe:电介质的电极化率

  • 电位移矢量(介质中的高斯定理)

    • 定义式:    D ⃗ = ε E ⃗ + P ⃗    \;\vec{D}=\varepsilon\vec{E}+\vec{P}\; D =εE +P
    • 与电场强度    E    \;E\; E之间的关系:

      D ⃗ = ε ( 1 + χ e ) E ⃗ = ε E ⃗ = ε r ε 0 E ⃗ \vec{D}=\varepsilon(1+\chi_e)\vec{E}=\varepsilon\vec{E}=\varepsilon_r\varepsilon_0\vec{E} D =ε(1+χe)E =εE =εrε0E
  • 电介质中基本方程
    { ▽ ⋅ D ⃗ = ρ ▽ × E ⃗ = 0 \left\{ \begin{array}{lr} \triangledown\cdot\vec{D}=\rho\\ \triangledown\times\vec{E}=0 \end{array} \right . {D =ρ×E =0

2.4.2 磁介质的磁化
  • 磁介质的磁化

    • 定义:在外磁场作用下,分子磁矩定向排列,宏观上显示出磁性,这种现象称为磁介质的磁化
    • 图解
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OjVkPrCK-1588699555400)(https://i.imgur.com/jUA5cx2.png)]
  • 磁化强度矢量    M ⃗    \;\vec{M}\; M

    • 定义:单位体积内的分子磁矩的矢量和
    • 与磁场强度的关系:

      M ⃗ = χ m H ⃗ B ⃗ = μ 0 ( 1 + χ m ) H ⃗ = μ H ⃗ \vec{M}=\chi_m\vec{H}\\ \vec{B}=\mu_0(1+\chi_m)\vec{H}=\mu\vec{H} M =χmH B =μ0(1+χm)H =μH
2.4.3 媒质传导的特性
  • 定义:存在可以自由移动带电例子的介质称为导电媒质。在外场作用下,导电媒质中将形成定向流动电流。
  • 公式:    J ⃗ = σ E ⃗ \;\vec{J}=\sigma\vec{E} J =σE

2.5 电磁感应定律与位移电流

  • 电磁感应定律 ➡️ 揭示时变磁场产生电场
  • 位移电流 ➡️ 揭示时变电场产生磁场

重要结论:在时变情况下,电场与磁场相互激励,形成统一的电磁场

  • 法拉第电磁感应定律

    • 定义式: ∮ C E i n ⃗ ⋅ d l ⃗ = − d d t ∫ S B ⃗ ⋅ d S ⃗ \oint_C\vec{E_{in}}\cdot d\vec{l}=-\frac{d}{dt}\int_S\vec{B}\cdot d\vec{S} CEin dl =dtdSB dS

      • 对于空间中任意回路都存在
      • 感应电场为    E i n ⃗    \;\vec{E_{in}}\; Ein
      • E i n ⃗    \vec{E_{in}}\; Ein 由感应电动势产生:    ε i n = ∮ C E i n ⃗ ⋅ d l ⃗    \;\varepsilon_{in}=\oint_C\vec{E_{in}}\cdot d\vec{l}\; εin=CEin dl
      • ε i n    \varepsilon_{in}\; εin由变化的磁通量产生:
        ε i n = − d Ψ d t \varepsilon_{in}=-\frac{d\varPsi}{dt} εin=dtdΨ图解:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QxBZSqF5-1588699555403)(https://i.imgur.com/6TfMy0I.png)]
    • 推广的法拉第电磁感应定律

      • 空间中同时存在由电荷产生的电场    E c ⃗    \;\vec{E_c}\; Ec
        总电场    E ⃗ = E i n ⃗ + E c ⃗    \;\vec{E}=\vec{E_{in}}+\vec{E_c}\; E =Ein +Ec
        由于    ∮ C E c ⃗ ⋅ d l ⃗ = 0    \;\oint_C\vec{E_c}\cdot d\vec{l}=0\; CEc dl =0
        故有
        ∮ C E ⃗ ⋅ d l ⃗ = − d d t ∫ S B ⃗ ⋅ d S ⃗ \oint_C\vec{E}\cdot d\vec{l}=-\frac{d}{dt}\int_S\vec{B}\cdot d\vec{S} CE dl =dtdSB dS
  • 引起法拉第电磁感应定律的几种情况

    • 回路不变,磁场随时间变化

      • 积分形式:
        ∮ C E ⃗ ⋅ d l ⃗ = − ∫ S ∂ B ⃗ ∂ t ⋅ d S ⃗ \oint_C\vec{E}\cdot d\vec{l}=-\int_S\frac{\partial\vec{B}}{\partial t}\cdot d\vec{S} CE dl =StB dS
      • 微分形式(斯托克斯定理):
        ▽ × E ⃗ = − ∂ B ⃗ ∂ t \triangledown\times\vec{E}=-\frac{\partial\vec{B}}{\partial t} ×E =tB
    • 导体回路在恒定磁场中运动
      ε i n = ∮ C E ⃗ ⋅ d l ⃗ = ∮ C ( v ⃗ × B ⃗ ) ⋅ d l ⃗ \varepsilon_{in}=\oint_C\vec{E}\cdot d\vec{l}=\oint_C(\vec{v}\times\vec{B})\cdot d\vec{l} εin=CE dl =C(v ×B )dl

    • 回路在时变磁场中运动
      ε i n = ∮ C ( v ⃗ × B ⃗ ) ⋅ d l ⃗ − ∫ S ∂ B ⃗ ∂ t ⋅ d S ⃗ \varepsilon_{in}=\oint_C(\vec{v}\times\vec{B})\cdot d\vec{l}-\int_S\frac{\partial\vec{B}}{\partial t}\cdot d\vec{S} εin=C(v ×B )dl StB dS

      相关例题:PPT第二章p71

2.6 麦克斯韦方程组

2.6.1 麦克斯韦方程组积分形式
  • { ∮ C H ⃗ ⋅ d l ⃗ = ∮ S ( J ⃗ + ∂ D ⃗ ∂ t ) ⋅ d S ⃗ ∮ C E ⃗ ⋅ d l ⃗ = − ∫ S ∂ B ⃗ ∂ t ⋅ d S ⃗ ∮ S B ⃗ ⋅ d S ⃗ = 0 ∮ S D ⃗ ⋅ d S ⃗ = ∫ V ρ \left\{ \begin{array}{lr} \oint_C\vec{H}\cdot d\vec{l}=\oint_S(\vec{J}+\frac{\partial\vec{D}}{\partial t})\cdot d\vec{S}\\ \oint_C\vec{E}\cdot d\vec{l}=-\int_S\frac{\partial\vec{B}}{\partial t}\cdot d\vec{S}\\ \oint_S\vec{B}\cdot d\vec{S}=0\\ \oint_S\vec{D}\cdot d\vec{S}= \int_V\rho \end{array} \right . CH dl =S(J +tD )dS CE dl =StB dS SB dS =0SD dS =Vρ

  • ∮ S J ⃗ ⋅ d S ⃗ = − ∫ V ρ d V \oint_S\vec{J}\cdot d\vec{S}=-\int_V\rho dV SJ dS =VρdV

2.6.2 麦克斯韦方程组微分形式
  • { ▽ × H ⃗ = J ⃗ + ∂ D ⃗ ∂ t ▽ × E ⃗ = − ∂ B ⃗ ∂ t ▽ ⋅ B ⃗ = 0 ▽ ⋅ D ⃗ = ρ \left\{ \begin{array}{lr} \triangledown \times\vec{H}=\vec{J}+\frac{\partial\vec{D}}{\partial t}\\ \triangledown \times\vec{E}=-\frac{\partial\vec{B}}{\partial t}\\ \triangledown\cdot \vec{B}=0\\ \triangledown\cdot\vec{D}=\rho \end{array} \right . ×H =J +tD ×E =tB B =0D =ρ
2.6.3 麦克斯韦方程组适用范围:一切宏观电磁现象

在这里插入图片描述

相关例题:PPT第二章p87

2.7 电磁场的边界条件

2.7.1 边界条件一般表达式:

{ e n ⃗ × ( H 1 ⃗ − H 2 ⃗ ) = J S ⃗ e n ⃗ × ( E 1 ⃗ − E 2 ⃗ ) = 0 e n ⃗ ⋅ ( B 1 ⃗ − B 2 ⃗ ) = 0 e n ⃗ ⋅ ( D 1 ⃗ − D 2 ⃗ ) = ρ S \left\{ \begin{array}{lr} \vec{e_n}\times(\vec{H_1}-\vec{H_2})=\vec{J_S}\\ \vec{e_n}\times(\vec{E_1}-\vec{E_2})=0\\ \vec{e_n}\cdot(\vec{B_1}-\vec{B_2})=0\\ \vec{e_n}\cdot(\vec{D_1}-\vec{D_2})=\rho_S \end{array} \right . en ×(H1 H2 )=JS en ×(E1 E2 )=0en (B1 B2 )=0en (D1 D2 )=ρS

2.7.2 两种常见情况
  • 在两种理想介质分界面上,通常没有电荷和电流分布,即    J S = 0        ρ S = 0    \;J_S=0\;\;\;\rho_S=0\; JS=0ρS=0,故
    { e n ⃗ × ( H 1 ⃗ − H 2 ⃗ ) = 0 e n ⃗ × ( E 1 ⃗ − E 2 ⃗ ) = 0 e n ⃗ ⋅ ( B 1 ⃗ − B 2 ⃗ ) = 0 e n ⃗ ⋅ ( D 1 ⃗ − D 2 ⃗ ) = 0 \left\{ \begin{array}{lr} \vec{e_n}\times(\vec{H_1}-\vec{H_2})=0\\ \vec{e_n}\times(\vec{E_1}-\vec{E_2})=0\\ \vec{e_n}\cdot(\vec{B_1}-\vec{B_2})=0\\ \vec{e_n}\cdot(\vec{D_1}-\vec{D_2})=0 \end{array} \right . en ×(H1 H2 )=0en ×(E1 E2 )=0en (B1 B2 )=0en (D1 D2 )=0
  • 理想导体表面上的边界条件

    理想导体:电导率为无限大的导电媒质
    特征:电磁场不可能进入理想导体内

    设媒质2为理想导体,则    E 2      D 2      H 2      B 2    \;E_2\;\;D_2\;\;H_2\;\;B_2\; E2D2H2B2均为零,故
    { e n ⃗ × H ⃗ = J S ⃗ e n ⃗ × E ⃗ = 0 e n ⃗ ⋅ B ⃗ = 0 e n ⃗ ⋅ D ⃗ = ρ S \left\{ \begin{array}{lr} \vec{e_n}\times\vec{H}=\vec{J_S}\\ \vec{e_n}\times\vec{E}=0\\ \vec{e_n}\cdot\vec{B}=0\\ \vec{e_n}\cdot\vec{D}=\rho_S \end{array} \right . en ×H =JS en ×E =0en B =0en D =ρS

    相关例题:PPT第二章P96

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值