三相感应电机转矩方程推导


i = [ i s i r ] = [ i A i B i C i a i b i c ] L = [ L s L s r L r s L r ] \begin{align*} \mathbf{i}=\begin{bmatrix}\mathbf{i}_{s} \\\mathbf{i}_{r}\end{bmatrix}=\begin{bmatrix}i_{A} \\i_{B} \\i_{C} \\i_{a}\\i_{b}\\i_{c}\end{bmatrix} & & \mathbf{L}=\begin{bmatrix} \mathbf{L}_{s} & \mathbf{L}_{s r} \\ \mathbf{L}_{r s} & \mathbf{L}_{r} \end{bmatrix} \end{align*} i=[isir]= iAiBiCiaibic L=[LsLrsLsrLr]
假设电流与磁链线性相关,此时磁共能等于磁能,令 θ e = θ \theta_{e}=\theta θe=θ 采用虚位移法计算电磁转矩有:

T e = ∂ W m ′ ∂ θ m = n p ∂ W m ′ ∂ θ e = n p ∂ 1 2 i T ψ ∂ θ = 1 2 n p i T ∂ L i ∂ θ = 1 2 n p i T ∂ L ∂ θ i = 1 2 n p i T [ 0 ∂ L s r ∂ θ ∂ L r s ∂ θ 0 ] i = 1 2 n p ( i r T ∂ L r s ∂ θ i s + i s T ∂ L s r ∂ θ i r ) = − n p L m s [ ( i A i a + i b i b + i C i c ) sin ⁡ θ + ( i A i b + i b i c + i C i a ) sin ⁡ ( θ + 2 π 3 ) + ( i A i c + i b i a + i C i b ) sin ⁡ ( θ − 2 π 3 ) ] = − n p L m s [ i A B C T i a b c sin ⁡ θ + i A B C T [ 0 1 0 0 0 1 1 0 0 ] i a b c sin ⁡ ( θ + 2 π 3 ) + i A B C T [ 0 0 1 1 0 0 0 1 0 ] i a b c sin ⁡ ( θ − 2 π 3 ) ] = − n p L m s i A B C T [ sin ⁡ θ sin ⁡ ( θ + 2 π 3 ) sin ⁡ ( θ − 2 π 3 ) sin ⁡ ( θ − 2 π 3 ) sin ⁡ θ sin ⁡ ( θ + 2 π 3 ) sin ⁡ ( θ + 2 π 3 ) sin ⁡ ( θ − 2 π 3 ) sin ⁡ θ ] i a b c \begin{align*} T_{e}&=\frac{ \partial W_{m}^{'} }{ \partial \theta_{m} }=n_{p}\frac{ \partial W_{m}^{'} }{ \partial \theta_{e} } =n_{p}\frac{ \partial \frac{1}{2}\mathbf{i}^{T}\boldsymbol{\psi} }{ \partial \theta } =\frac{1}{2}n_{p}\mathbf{i}^{T}\frac{ \partial \mathbf{L}\mathbf{i} }{ \partial \theta } \\ \\ &=\frac{1}{2}n_{p}\mathbf{i}^{T}\frac{ \partial \mathbf{L} }{ \partial \theta } \mathbf{i}=\frac{1}{2}n_{p}\mathbf{i}^{T}\begin{bmatrix} 0 & \frac{ \partial \mathbf{L}_{sr} }{ \partial \theta } \\ \frac{ \partial \mathbf{L}_{r s} }{ \partial \theta } & 0 \end{bmatrix} \mathbf{i}=\frac{1}{2}n_{p} (\mathbf{i}_{r}^{T}\frac{ \partial \mathbf{L}_{r s} }{ \partial \theta } \mathbf{i}_{s} +\mathbf{i}_{s}^{T}\frac{ \partial \mathbf{L}_{s r} }{ \partial \theta }\mathbf{i}_{r}) \\ \\ &=-n_{p}L_{ms}\left[ (i_{A}i_{a}+i_{b}i_{b}+i_{C}i_{c})\sin \theta+(i_{A}i_{b}+i_{b}i_{c}+i_{C}i_{a})\sin\left( \theta+ \frac{2\pi}{3} \right) +(i_{A}i_{c}+i_{b}i_{a}+i_{C}i_{b})\sin\left( \theta- \frac{2\pi}{3} \right)\right] \\ \\ &=-n_{p}L_{ms}\left[ \mathbf{i}_{ABC}^{T}\mathbf{i}_{abc}\sin \theta+\mathbf{i}_{ABC}^{T}\begin{bmatrix} 0 & 1 & 0 \\0 & 0 & 1 \\1 & 0 & 0\end{bmatrix} \mathbf{i}_{abc}\sin\left( \theta+ \frac{2\pi}{3} \right)+\mathbf{i}_{ABC}^{T}\begin{bmatrix} 0 & 0 & 1 \\1 & 0 & 0 \\0 & 1 & 0\end{bmatrix}\mathbf{i}_{abc}\sin\left( \theta- \frac{2\pi}{3} \right) \right] \\ \\&=-n_{p}L_{ms}\mathbf{i}_{ABC}^{T}\begin{bmatrix} \sin \theta & \sin\left( \theta+\frac{2\pi}{3} \right) & \sin\left( \theta-\frac{2\pi}{3} \right) \\ \sin\left( \theta-\frac{2\pi}{3} \right) & \sin \theta & \sin\left( \theta+\frac{2\pi}{3} \right) \\ \sin\left( \theta+\frac{2\pi}{3}\right) & \sin\left( \theta-\frac{2\pi}{3} \right) & \sin \theta \end{bmatrix}\mathbf{i}_{abc} \end{align*} Te=θmWm=npθeWm=npθ21iTψ=21npiTθLi=21npiTθLi=21npiT[0θLrsθLsr0]i=21np(irTθLrsis+isTθLsrir)=npLms[(iAia+ibib+iCic)sinθ+(iAib+ibic+iCia)sin(θ+32π)+(iAic+ibia+iCib)sin(θ32π)]=npLms iABCTiabcsinθ+iABCT 001100010 iabcsin(θ+32π)+iABCT 010001100 iabcsin(θ32π) =npLmsiABCT sinθsin(θ32π)sin(θ+32π)sin(θ+32π)sinθsin(θ32π)sin(θ32π)sin(θ+32π)sinθ iabc
具体过程可以参考下图:
转矩计算过程1

i A B C \mathbf{i}_{ABC} iABC i a b c \mathbf{i}_{abc} iabc 可等效为 i s d q \mathbf{i}_{sdq} isdq i r d q \mathbf{i}_{r dq} irdq 进行(系数为1:原因是计算为真实值,并非变换值)反 P a r k Park Park 变换,即
{ i A B C = C d q − a b c ( θ 1 ) i s d q i a b c = C d q − a b c ( θ 1 − θ ) i r d q \begin{cases} \mathbf{i}_{ABC}=\mathbf{C}_{dq-abc}(\theta_{1})\mathbf{i}_{s d q} \\ \mathbf{i}_{abc}=\mathbf{C}_{dq-abc}(\theta_{1}-\theta)\mathbf{i}_{rdq} \end{cases} {iABC=Cdqabc(θ1)isdqiabc=Cdqabc(θ1θ)irdq
其中 (系数为1)反 P a r k Park Park 变换矩阵为:
C d q − a b c ( θ ) = [ cos ⁡ θ − sin ⁡ θ cos ⁡ ( θ − 2 π 3 ) − sin ⁡ ( θ − 2 π 3 ) cos ⁡ ( θ + 2 π 3 ) − sin ⁡ ( θ + 2 π 3 ) ] \mathbf{C}_{dq-abc}(\theta)=\begin{bmatrix} \cos\theta& -\sin\theta \\ \cos\left( \theta-\frac{2\pi}{3} \right) & -\sin\left( \theta-\frac{2\pi}{3} \right) \\ \cos\left( \theta+\frac{2\pi}{3} \right) & -\sin\left( \theta+\frac{2\pi}{3} \right) \end{bmatrix} Cdqabc(θ)= cosθcos(θ32π)cos(θ+32π)sinθsin(θ32π)sin(θ+32π)
则:
T e = − n p L m s i s d q T C T ( θ 1 ) [ sin ⁡ θ sin ⁡ ( θ + 2 π 3 ) sin ⁡ ( θ − 2 π 3 ) sin ⁡ ( θ − 2 π 3 ) sin ⁡ θ sin ⁡ ( θ + 2 π 3 ) sin ⁡ ( θ + 2 π 3 ) sin ⁡ ( θ − 2 π 3 ) sin ⁡ θ ] C ( θ 1 − θ ) i r d q = − n p L m s i s d q T [ 0 1 − 1 0 ] i r d q = − n p L m [ i s d i s q ] [ 0 1 − 1 0 ] [ i r d i r q ] = 9 n p L m s 4 ( i s q i r d − i s d i r q ) = 3 n p L m 2 ( i s q i r d − i s d i r q ) \begin{align*} T_{e}&=-n_{p}L_{ms}\mathbf{i}_{sdq}^{T}\mathbf{C}^{T}(\theta_{1})\begin{bmatrix} \sin \theta & \sin\left( \theta+\frac{2\pi}{3} \right) & \sin\left( \theta-\frac{2\pi}{3} \right) \\ \sin\left( \theta-\frac{2\pi}{3} \right) & \sin \theta & \sin\left( \theta+\frac{2\pi}{3} \right) \\ \sin\left( \theta+\frac{2\pi}{3} \right) & \sin\left( \theta-\frac{2\pi}{3} \right) & \sin \theta \end{bmatrix}\mathbf{C}(\theta_{1}-\theta) \mathbf{i}_{rdq} \\ \\ &=-n_{p}L_{ms}\mathbf{i}_{sdq}^{T}\begin{bmatrix} 0 & 1 \\-1 & 0\end{bmatrix}\mathbf{i}_{rdq}=-n_{p}L_{m}\begin{bmatrix} i_{sd} & i_{s q}\end{bmatrix}\begin{bmatrix}0 & 1 \\-1 & 0\end{bmatrix}\begin{bmatrix}i_{r d} \\i_{rq}\end{bmatrix} \\ \\ &=\frac{9n_{p}L_{ms}}{4}(i_{s q}i_{r d}-i_{s d}i_{r q}) \\ \\ &=\frac{3n_{p}L_{m}}{2}(i_{s q}i_{r d}-i_{s d}i_{r q}) \end{align*} Te=npLmsisdqTCT(θ1) sinθsin(θ32π)sin(θ+32π)sin(θ+32π)sinθsin(θ32π)sin(θ32π)sin(θ+32π)sinθ C(θ1θ)irdq=npLmsisdqT[0110]irdq=npLm[isdisq][0110][irdirq]=49npLms(isqirdisdirq)=23npLm(isqirdisdirq)
中间具体计算过程如下:
![[../../附件/Pasted image 20230509025123.png|500]]

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
永磁同步电机dq方程推导可以从以下几个步骤进行: 1. 首先,根据引用中提到的拉格朗日运动方程,我们可以得到电机的动能和势能之间的关系,进而推导电机的动力学方程。 2. 接下来,根据引用中的磁链方程电磁转矩方程,我们可以得到永磁同步电机在dq坐标系下的数学模型。 3. 在dq坐标系中,D轴代表电机磁通的方向,Q轴代表电机磁通的垂直方向。根据引用中提到的在D_Q轴电压方程中,D轴和Q轴的耦合项取正负的原因,我们可以解释为D轴和Q轴的磁通相互耦合,而磁通的变化会导致电压的变化。 综上所述,永磁同步电机dq方程推导主要涉及到拉格朗日运动方程、磁链方程电磁转矩方程,并根据坐标轴的定义解释了D轴和Q轴耦合项的正负关系。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [三相永磁同步电机矢量控制建模与仿真(包含simulink仿真文件与word文章 )](https://download.csdn.net/download/qq_40276082/87704177)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [永磁同步电机电压方程(dq轴电压方程正负的关系)](https://blog.csdn.net/pofenglangguayunfan/article/details/77328199)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [永磁同步电机矢量控制(二)—— 控制原理与坐标变换推导](https://blog.csdn.net/wanrenqi/article/details/104668456)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值