令
i
=
[
i
s
i
r
]
=
[
i
A
i
B
i
C
i
a
i
b
i
c
]
L
=
[
L
s
L
s
r
L
r
s
L
r
]
\begin{align*} \mathbf{i}=\begin{bmatrix}\mathbf{i}_{s} \\\mathbf{i}_{r}\end{bmatrix}=\begin{bmatrix}i_{A} \\i_{B} \\i_{C} \\i_{a}\\i_{b}\\i_{c}\end{bmatrix} & & \mathbf{L}=\begin{bmatrix} \mathbf{L}_{s} & \mathbf{L}_{s r} \\ \mathbf{L}_{r s} & \mathbf{L}_{r} \end{bmatrix} \end{align*}
i=[isir]=
iAiBiCiaibic
L=[LsLrsLsrLr]
假设电流与磁链线性相关,此时磁共能等于磁能,令
θ
e
=
θ
\theta_{e}=\theta
θe=θ 采用虚位移法计算电磁转矩有:
T
e
=
∂
W
m
′
∂
θ
m
=
n
p
∂
W
m
′
∂
θ
e
=
n
p
∂
1
2
i
T
ψ
∂
θ
=
1
2
n
p
i
T
∂
L
i
∂
θ
=
1
2
n
p
i
T
∂
L
∂
θ
i
=
1
2
n
p
i
T
[
0
∂
L
s
r
∂
θ
∂
L
r
s
∂
θ
0
]
i
=
1
2
n
p
(
i
r
T
∂
L
r
s
∂
θ
i
s
+
i
s
T
∂
L
s
r
∂
θ
i
r
)
=
−
n
p
L
m
s
[
(
i
A
i
a
+
i
b
i
b
+
i
C
i
c
)
sin
θ
+
(
i
A
i
b
+
i
b
i
c
+
i
C
i
a
)
sin
(
θ
+
2
π
3
)
+
(
i
A
i
c
+
i
b
i
a
+
i
C
i
b
)
sin
(
θ
−
2
π
3
)
]
=
−
n
p
L
m
s
[
i
A
B
C
T
i
a
b
c
sin
θ
+
i
A
B
C
T
[
0
1
0
0
0
1
1
0
0
]
i
a
b
c
sin
(
θ
+
2
π
3
)
+
i
A
B
C
T
[
0
0
1
1
0
0
0
1
0
]
i
a
b
c
sin
(
θ
−
2
π
3
)
]
=
−
n
p
L
m
s
i
A
B
C
T
[
sin
θ
sin
(
θ
+
2
π
3
)
sin
(
θ
−
2
π
3
)
sin
(
θ
−
2
π
3
)
sin
θ
sin
(
θ
+
2
π
3
)
sin
(
θ
+
2
π
3
)
sin
(
θ
−
2
π
3
)
sin
θ
]
i
a
b
c
\begin{align*} T_{e}&=\frac{ \partial W_{m}^{'} }{ \partial \theta_{m} }=n_{p}\frac{ \partial W_{m}^{'} }{ \partial \theta_{e} } =n_{p}\frac{ \partial \frac{1}{2}\mathbf{i}^{T}\boldsymbol{\psi} }{ \partial \theta } =\frac{1}{2}n_{p}\mathbf{i}^{T}\frac{ \partial \mathbf{L}\mathbf{i} }{ \partial \theta } \\ \\ &=\frac{1}{2}n_{p}\mathbf{i}^{T}\frac{ \partial \mathbf{L} }{ \partial \theta } \mathbf{i}=\frac{1}{2}n_{p}\mathbf{i}^{T}\begin{bmatrix} 0 & \frac{ \partial \mathbf{L}_{sr} }{ \partial \theta } \\ \frac{ \partial \mathbf{L}_{r s} }{ \partial \theta } & 0 \end{bmatrix} \mathbf{i}=\frac{1}{2}n_{p} (\mathbf{i}_{r}^{T}\frac{ \partial \mathbf{L}_{r s} }{ \partial \theta } \mathbf{i}_{s} +\mathbf{i}_{s}^{T}\frac{ \partial \mathbf{L}_{s r} }{ \partial \theta }\mathbf{i}_{r}) \\ \\ &=-n_{p}L_{ms}\left[ (i_{A}i_{a}+i_{b}i_{b}+i_{C}i_{c})\sin \theta+(i_{A}i_{b}+i_{b}i_{c}+i_{C}i_{a})\sin\left( \theta+ \frac{2\pi}{3} \right) +(i_{A}i_{c}+i_{b}i_{a}+i_{C}i_{b})\sin\left( \theta- \frac{2\pi}{3} \right)\right] \\ \\ &=-n_{p}L_{ms}\left[ \mathbf{i}_{ABC}^{T}\mathbf{i}_{abc}\sin \theta+\mathbf{i}_{ABC}^{T}\begin{bmatrix} 0 & 1 & 0 \\0 & 0 & 1 \\1 & 0 & 0\end{bmatrix} \mathbf{i}_{abc}\sin\left( \theta+ \frac{2\pi}{3} \right)+\mathbf{i}_{ABC}^{T}\begin{bmatrix} 0 & 0 & 1 \\1 & 0 & 0 \\0 & 1 & 0\end{bmatrix}\mathbf{i}_{abc}\sin\left( \theta- \frac{2\pi}{3} \right) \right] \\ \\&=-n_{p}L_{ms}\mathbf{i}_{ABC}^{T}\begin{bmatrix} \sin \theta & \sin\left( \theta+\frac{2\pi}{3} \right) & \sin\left( \theta-\frac{2\pi}{3} \right) \\ \sin\left( \theta-\frac{2\pi}{3} \right) & \sin \theta & \sin\left( \theta+\frac{2\pi}{3} \right) \\ \sin\left( \theta+\frac{2\pi}{3}\right) & \sin\left( \theta-\frac{2\pi}{3} \right) & \sin \theta \end{bmatrix}\mathbf{i}_{abc} \end{align*}
Te=∂θm∂Wm′=np∂θe∂Wm′=np∂θ∂21iTψ=21npiT∂θ∂Li=21npiT∂θ∂Li=21npiT[0∂θ∂Lrs∂θ∂Lsr0]i=21np(irT∂θ∂Lrsis+isT∂θ∂Lsrir)=−npLms[(iAia+ibib+iCic)sinθ+(iAib+ibic+iCia)sin(θ+32π)+(iAic+ibia+iCib)sin(θ−32π)]=−npLms
iABCTiabcsinθ+iABCT
001100010
iabcsin(θ+32π)+iABCT
010001100
iabcsin(θ−32π)
=−npLmsiABCT
sinθsin(θ−32π)sin(θ+32π)sin(θ+32π)sinθsin(θ−32π)sin(θ−32π)sin(θ+32π)sinθ
iabc
具体过程可以参考下图:

对
i
A
B
C
\mathbf{i}_{ABC}
iABC 和
i
a
b
c
\mathbf{i}_{abc}
iabc 可等效为
i
s
d
q
\mathbf{i}_{sdq}
isdq 和
i
r
d
q
\mathbf{i}_{r dq}
irdq 进行(系数为1:原因是计算为真实值,并非变换值)反
P
a
r
k
Park
Park 变换,即
{
i
A
B
C
=
C
d
q
−
a
b
c
(
θ
1
)
i
s
d
q
i
a
b
c
=
C
d
q
−
a
b
c
(
θ
1
−
θ
)
i
r
d
q
\begin{cases} \mathbf{i}_{ABC}=\mathbf{C}_{dq-abc}(\theta_{1})\mathbf{i}_{s d q} \\ \mathbf{i}_{abc}=\mathbf{C}_{dq-abc}(\theta_{1}-\theta)\mathbf{i}_{rdq} \end{cases}
{iABC=Cdq−abc(θ1)isdqiabc=Cdq−abc(θ1−θ)irdq
其中 (系数为1)反
P
a
r
k
Park
Park 变换矩阵为:
C
d
q
−
a
b
c
(
θ
)
=
[
cos
θ
−
sin
θ
cos
(
θ
−
2
π
3
)
−
sin
(
θ
−
2
π
3
)
cos
(
θ
+
2
π
3
)
−
sin
(
θ
+
2
π
3
)
]
\mathbf{C}_{dq-abc}(\theta)=\begin{bmatrix} \cos\theta& -\sin\theta \\ \cos\left( \theta-\frac{2\pi}{3} \right) & -\sin\left( \theta-\frac{2\pi}{3} \right) \\ \cos\left( \theta+\frac{2\pi}{3} \right) & -\sin\left( \theta+\frac{2\pi}{3} \right) \end{bmatrix}
Cdq−abc(θ)=
cosθcos(θ−32π)cos(θ+32π)−sinθ−sin(θ−32π)−sin(θ+32π)
则:
T
e
=
−
n
p
L
m
s
i
s
d
q
T
C
T
(
θ
1
)
[
sin
θ
sin
(
θ
+
2
π
3
)
sin
(
θ
−
2
π
3
)
sin
(
θ
−
2
π
3
)
sin
θ
sin
(
θ
+
2
π
3
)
sin
(
θ
+
2
π
3
)
sin
(
θ
−
2
π
3
)
sin
θ
]
C
(
θ
1
−
θ
)
i
r
d
q
=
−
n
p
L
m
s
i
s
d
q
T
[
0
1
−
1
0
]
i
r
d
q
=
−
n
p
L
m
[
i
s
d
i
s
q
]
[
0
1
−
1
0
]
[
i
r
d
i
r
q
]
=
9
n
p
L
m
s
4
(
i
s
q
i
r
d
−
i
s
d
i
r
q
)
=
3
n
p
L
m
2
(
i
s
q
i
r
d
−
i
s
d
i
r
q
)
\begin{align*} T_{e}&=-n_{p}L_{ms}\mathbf{i}_{sdq}^{T}\mathbf{C}^{T}(\theta_{1})\begin{bmatrix} \sin \theta & \sin\left( \theta+\frac{2\pi}{3} \right) & \sin\left( \theta-\frac{2\pi}{3} \right) \\ \sin\left( \theta-\frac{2\pi}{3} \right) & \sin \theta & \sin\left( \theta+\frac{2\pi}{3} \right) \\ \sin\left( \theta+\frac{2\pi}{3} \right) & \sin\left( \theta-\frac{2\pi}{3} \right) & \sin \theta \end{bmatrix}\mathbf{C}(\theta_{1}-\theta) \mathbf{i}_{rdq} \\ \\ &=-n_{p}L_{ms}\mathbf{i}_{sdq}^{T}\begin{bmatrix} 0 & 1 \\-1 & 0\end{bmatrix}\mathbf{i}_{rdq}=-n_{p}L_{m}\begin{bmatrix} i_{sd} & i_{s q}\end{bmatrix}\begin{bmatrix}0 & 1 \\-1 & 0\end{bmatrix}\begin{bmatrix}i_{r d} \\i_{rq}\end{bmatrix} \\ \\ &=\frac{9n_{p}L_{ms}}{4}(i_{s q}i_{r d}-i_{s d}i_{r q}) \\ \\ &=\frac{3n_{p}L_{m}}{2}(i_{s q}i_{r d}-i_{s d}i_{r q}) \end{align*}
Te=−npLmsisdqTCT(θ1)
sinθsin(θ−32π)sin(θ+32π)sin(θ+32π)sinθsin(θ−32π)sin(θ−32π)sin(θ+32π)sinθ
C(θ1−θ)irdq=−npLmsisdqT[0−110]irdq=−npLm[isdisq][0−110][irdirq]=49npLms(isqird−isdirq)=23npLm(isqird−isdirq)
中间具体计算过程如下:
![![[../../附件/Pasted image 20230509025123.png|500]]](https://i-blog.csdnimg.cn/blog_migrate/42c0f8f8e63f9148872933544a6d4dbf.png)

被折叠的 条评论
为什么被折叠?



