【经验分享】f(x)的一个原函数怎么求?

要找函数 f ( x ) f(x) f(x) 的一个原函数(即不定积分),可以按照以下步骤进行:

  1. 确定形式:首先判断 f ( x ) f(x) f(x) 是什么类型的函数,例如多项式、指数函数、对数函数、三角函数等。

  2. 使用积分公式:根据不同的函数类型,使用相应的积分公式。

    • 对于多项式函数 f ( x ) = x n f(x) = x^n f(x)=xn,其原函数是 ∫ x n \int x^n xn, d x = x n + 1 n + 1 + C dx = \frac{x^{n+1}}{n+1} + C dx=n+1xn+1+C(其中 n ≠ − 1 n \neq -1 n=1
    • 对于指数函数 f ( x ) = e x f(x) = e^x f(x)=ex,其原函数是 ∫ e x   d x = e x + C \int e^x \, dx = e^x + C exdx=ex+C
    • 对于对数函数 ( f(x) = \frac{1}{x} ),其原函数是 ∫ 1 x   d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x} \, dx = \ln|x| + C x1dx=lnx+C
    • 对于三角函数,如 ( f(x) = \sin(x) ),其原函数是 ∫ sin ⁡ ( x )   d x = − cos ⁡ ( x ) + C \int \sin(x) \, dx = -\cos(x) + C sin(x)dx=cos(x)+C
  3. 处理常数:积分中常数可以直接提取到积分号外。例如,若 f ( x ) = 3 x 2 f(x) = 3x^2 f(x)=3x2,则其原函数为 ∫ 3 x 2   d x = 3 ∫ x 2   d x \int 3x^2 \, dx = 3 \int x^2 \, dx 3x2dx=3x2dx

  4. 加上积分常数 ( C ):计算不定积分时,不要忘记加上积分常数 ( C ),这是因为原函数不唯一,任意两个原函数之间的差值是常数。

例子

如果 f ( x ) = 2 x 3 − 4 x f(x) = 2x^3 - 4x f(x)=2x34x,那么可以按如下步骤求原函数:

∫ f ( x )   d x = ∫ ( 2 x 3 − 4 x )   d x = 2 ∫ x 3   d x − 4 ∫ x   d x \int f(x) \, dx = \int (2x^3 - 4x) \, dx = 2 \int x^3 \, dx - 4 \int x \, dx f(x)dx=(2x34x)dx=2x3dx4xdx

= 2 ( x 4 4 ) − 4 ( x 2 2 ) + C = x 4 2 − 2 x 2 + C = 2 \left(\frac{x^4}{4}\right) - 4 \left(\frac{x^2}{2}\right) + C = \frac{x^4}{2} - 2x^2 + C =2(4x4)4(2x2)+C=2x42x2+C

所以, x 4 2 − 2 x 2 + C \frac{x^4}{2} - 2x^2 + C 2x42x2+C f ( x ) f(x) f(x) 的一个原函数。

如果有具体的函数 f ( x ) f(x) f(x),我可以帮你详细计算出其原函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

命运之光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值