链接:
#include <stdio.h>
int main()
{
puts("转载请注明出处[vmurder]谢谢");
puts("网址:blog.csdn.net/vmurder/article/details/45746089");
}
题解:
三个定义:高度h,v速度,Ah+Bv为s
首先我们在外圈枚举来固定其中一个权值,姑且枚举v吧。每次枚举值大写为V。
然后在内圈就可以做单调队列了。
我们枚举让h递增,每次为H,然后发现原来的式子要满足 Ah+Bv<=C+AH+BV 。
然后 H增大会使得右式增大,然后如果我们按s(定义去题解第一句话找)为键值从小到大排序,那么满足此式的队员是单调上升的。
然后 我们单调地每次把满足此式子的队员加入队列,判断如果其v值满足条件 V<=v<=V+CB ,则把它计数,即此种枚举情况时的ans++。( v<=V+CB 为什么对?如果 v>V+CB ,则 Bv−BV>C 然后你懂得)【加入环节】
然后 会有一些被计数的队员身高式子存在 h<H ,我们从前往后单调地把身高不满足上式的出队,如果之前被计数了,则此种枚举情况时的ans- -。【弹出环节】
这样比较一下这 n2 个答案,我们就在 O(n2) 的时间复杂度下解决了这道题。
但是?【弹出环节】是否会弹出一些【加入环节】没有加入的点呢?
让我来猜一猜,你的答案一定是”不会“吧?
然而答案是会,但是这种点并不会影响答案。
分类讨论下
首先如果一个点满足被计数的条件即
V<=v<=V+CB
,那么如果又满足
h<H
那么有
0+B(v−V)<=C
,而
A(h−H)则一定<0
。
所以
A(h−H)+B(v−V)<=C
。。。。。。所以一定加进来然后被计数过,不会减多了。
然后如果不满足被计数的条件。23333,都没有被计数我们管它作甚?
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 5050
using namespace std;
int n,A,B,C;
int Max,Min,l,r,cnt,ans;
struct KSD
{
int h,v,s;
void keep(){s=A*h+B*v;}
}x[2][N];
inline bool cmph(const KSD &a,const KSD &b){return a.h<b.h;}
inline bool cmps(const KSD &a,const KSD &b){return a.s<b.s;}
inline bool check(int id,int d)
{return x[id][d].v<=Max&&x[id][d].v>=Min;}
int main()
{
int i,j,k;
scanf("%d%d%d%d",&n,&A,&B,&C);
for(i=1;i<=n;i++)
{
scanf("%d%d",&x[0][i].h,&x[0][i].v);
x[0][i].keep(),x[1][i]=x[0][i];
}
sort(x[0]+1,x[0]+n+1,cmph);
sort(x[1]+1,x[1]+n+1,cmps);
for(i=1;i<=n;i++) // 枚举v最小值
{
Min=x[0][i].v,Max=Min+C/B;
l=r=cnt=0;
for(j=1;j<=n;j++) // 枚举h最小值
{
while(r<n&&x[1][r+1].s-A*x[0][j].h-B*x[0][i].v<=C)
cnt+=check(1,++r);//按照s排序取出可行队员
while(l<n&&x[0][l+1].h<x[0][j].h)cnt-=check(0,++l);
ans=max(ans,cnt);//再干掉一些当初入队时计数了的队员
}
}
printf("%d\n",ans);
return 0;
}