随着物联网技术的发展,实时视频分析技术已应用于智能物联网的各个领域。英特尔基于与GStreamer以及OpenVINO构建了整套实时视频分析方案,为用户提供更加灵活、便捷的实时视频分析服务。本文由英特尔高级软件工程师 吴秋娇在LiveVideoStack线上分享内容整理而成。
文 / 吴秋娇
整理 / LiveVideoStack
01
背景介绍
随着物联网技术的发展,实时视频分析技术已应用于智能物联网的各个领域,例如:智能零售、智能工厂、智能监控等,如果把视频比作物联网的眼睛,那么实时视频分析技术就是物联网的大脑。
目前基于深度学习以及计算机视觉的视频分析是最通用的方式。
以物联网技术中非常通用的场景-物体识别技术为例,如图是典型的物体识别的流程图,在前端采集一段视频流,再将物体识别出来,对所识别的物体进行标注,再进行回传显示,需要经过很多复杂的步骤,其中需要调用很多接口。同样还会涉及到颜色空间转换、缩放、推理、以及编解码的过程,这些过程都需要占用很大的计算资源。
同时在实际环境中如果有CPU,GPU,VPU等多种计算资源,如何让编解码以及推理等过程充分利用不同的计算资源从而提升系统性能?此外,当系统需要应对更多的流分析任务时,如何进行方便快速地扩展。这些都是实时分析系统会碰到的问题。接下来我们从这些问题出发来介绍OWT(Open WebRTC Toolkit)如何解决实时分析系统的复杂性,性能以及扩展问题。OWT的实时分析系统是基于英特尔的OpenVINO以及开源的GStreamer框架进行开发,我们先对OpenVINO,GStreamer以及OWT做个简单的介绍。
02
英特尔 vision computing platform
Open VINO是英特尔推出的pipeline的工具集,具有完成算法、模型部署所需要的各种能力。
从图中可以看出