编者按:本文是“破解色带现象”文章的第二部分,Fabio Sonnati进一步 分析了色带现象产生的原因,并提供了新的检测办法。本文已获得作者授权转载。
翻译:Argus
原文链接:https://sonnati.wordpress.com/2022/09/16/defeat-banding-part-ii/
最近,色带终于成为编码优化的热门话题。正如上一篇文章中所讨论的,它现在是编码专家最大的敌人之一,尤其是在尝试微调内容感知编码[CAE]技术时。
当压缩在帧上局部减少过多的高频时会出现色带,这会在单个纯色条带中分离渐变。因此,这些条带很容易看到并降低了感知质量。
多年来,我一直强调,即使像 VMAF 这样有用的指标也无法有效地识别条带,我们需要更具体的指标或像 VMAF 这样的指标,但对画面的黑暗或平坦部分的伪影很敏感,希望是一个无参考指标,可用于源文件以及压缩后的指标评估。
图 1 – 在带状序列的情况下,VMAF 和 MOS 之间缺乏相关性(来源:Netflix)
正如上一篇文章所预期的那样,我在2020年开始实验一些关于衡量带状的指标的PoC,第二年我验证了这个逻辑在我的一个客户那里的工作,即 "带状指数