破解色带现象(下)

本文深入探讨了视频编码中的带状现象,分析其成因,并介绍了一种名为“bIndex”的无参考带状检测指标。该指标利用“自动相似性”原理,通过比较视频受损版本与原始内容的相似度来识别和量化带状伪影。Netflix的Cambi指标也被提及,两者在带状物检测上的方法有所不同。文章还讨论了指标的微调和应用,为视频质量评估提供了新工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编者按:本文是“破解色带现象”文章的第二部分,Fabio Sonnati进一步  分析了色带现象产生的原因,并提供了新的检测办法。本文已获得作者授权转载。

翻译:Argus

原文链接:https://sonnati.wordpress.com/2022/09/16/defeat-banding-part-ii/

最近,色带终于成为编码优化的热门话题。正如上一篇文章中所讨论的,它现在是编码专家最大的敌人之一,尤其是在尝试微调内容感知编码[CAE]技术时。

当压缩在帧上局部减少过多的高频时会出现色带,这会在单个纯色条带中分离渐变。因此,这些条带很容易看到并降低了感知质量。

多年来,我一直强调,即使像 VMAF 这样有用的指标也无法有效地识别条带,我们需要更具体的指标或像 VMAF 这样的指标,但对画面的黑暗或平坦部分的伪影很敏感,希望是一个无参考指标,可用于源文件以及压缩后的指标评估。

9ef47935aff654c8a5b1ef4f81169229.png

图 1 – 在带状序列的情况下,VMAF 和 MOS 之间缺乏相关性(来源:Netflix)

正如上一篇文章所预期的那样,我在2020年开始实验一些关于衡量带状的指标的PoC,第二年我验证了这个逻辑在我的一个客户那里的工作,即 "带状指数 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值