
本文整理自LiveVideoStack线上分享第三季,第九期,由阿里巴巴资深算法专家,蔡龙军(牧己)为大家详细介绍如何在制作和播出阶段,利用AI和大数据来提升重要环节的确定性,进而提升内容爆款的可能性。
大家好,我是来自优酷内容智能团队的资深技术专家牧己,主要负责基于大数据和人工智能去解决内容方面的问题。 接下来,我将以《长安十二时辰》为例,分享优酷在提升“爆款确定性”中的技术实践。
一、如何定义爆款?

优酷有个产品叫北斗星,相当于我们的文娱大脑。 一般比较热门的剧集的“北斗星日指数”约50-60W,而《长安十二时辰》的“北斗星日指数”可以达到100W+,并且还带动会员收入的快速攀升。 如果大家对北斗星指数没有概念,我再分享一个有趣的数字: 雷佳音在剧中吃“水晶柿子”的桥段,使西安水晶柿子的销量增长到往年的6倍。 综艺的年度爆款《这就是街舞》是同题材类型精品节目热度的2-3倍。 另外,这两档节目除了对18-34岁核心人群有很好的覆盖,对35-49岁的人群上也有一定辐射,可见爆款的影响力有多大。
二、长视频爆款的复杂与挑战:较高不确定性
长视频爆款的复杂和挑战主要来源于不确定性,并且这种不确定性渗透在内容的采集、宣发和投放的所有环节中。 第一个不确定叫做延迟满足和信息不完备。 长视频通过组织多个有效的事件序列,形成价值转换,刻画出不同人物,最终体现一个或多个价值观,整个过程需要很多剧集逐渐被用户感知。 每个用户对于内容的偏好点和关注点不同,获取的只是内容片面的信息,信息的不完备性,导致对于内容理解的偏差。

商业需要确定性,而内容具有极强的不确定性,如何依靠技术达到平衡? 这是内容产业发展所引发的思考。

三、 如何提升?向算法和数据榨取确定性
1、何为北斗星?
从内容的不确定性出发,优酷采取人机结合的系统即北斗星。 北斗星是一个具有思考能力的大脑,解决采、投、制、宣、发、放等内容全生命周期的不确定性,提升爆款能力。









第一层是基础层。 分为KG&Domain Knowledge/Feature Engineering和学习加速;
第二层是数据层。 分为数据生成(SMOTE),隶属度变换(高斯隶属度)和半监督学习;
第三层是模型层。 通过DNN和Relation Net以及MTL相结合,降低过拟合,提高模型的学习能力;
第四层是Uncertainty Learning,基于变分推断的框架进行内容不确定性的预测。






这一部分可以在网上参考“贝叶斯Network”,重点看它如何利用“变分”得到最后结果。 4、宣发阶段: 挖掘能力建设

LiveVideoStack 招募
LiveVideoStack正在招募编辑/记者/运营,与全球顶尖多媒体技术专家和LiveVideoStack年轻的伙伴一起,推动多媒体技术生态发展。同时,也欢迎你利用业余时间、远程参与内容生产。了解岗位信息请在BOSS直聘上搜索“LiveVideoStack”,或通过微信“Tony_Bao_”与主编包研交流。
