某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然
它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能超过前一发的高度.某天,雷达捕捉
到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹.
怎么办呢?多搞几套系统呗!你说说倒蛮容易,成本呢?成本是个大问题啊.所以俺就到这里来求救了,
请帮助计算一下最少需要多少套拦截系统.
Input:
输入若干组数据.每组数据包括:导弹总个数(正整数),导弹依此飞来的高度(雷达给出的高度数据是不大于30000的正整数,用空格分隔)
Output:
对应每组数据输出拦截所有导弹最少要配备多少套这种导弹拦截系统.
Sample Input:
8 389 207 155 300 299 170 158 65
Sample Output:
2
思路:
这个题按说用动规比较好,不过试过后发现用贪心更好写。
大致思路是用优先队列记录当前所有导弹系统可以打到的最大高度,然后每次取最小的看能否阻止导弹,
不能就找第二小的,这样一直找下去,直到找到第一个可以阻止导弹的系统然后更新这个系统的最大高度,
如果没有系统能拦截就再开一个新系统。
代码:
#include<stdio.h>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
struct cmp
{
bool operator()(int a,int b)
{
return a > b;
}
};
int main()
{
int N;
while(scanf("%d",&N)!=EOF)
{
priority_queue<int,vector<int>,cmp> Q1,Q2;
int sum = 0;
int mid;
while(N--)
{
scanf("%d",&mid);
while(!Q1.empty())
{
if(Q1.top()>=mid)
{
Q1.pop();
Q1.push(mid);
break;
}
else Q2.push(Q1.top()); //Q1取出来的暂时放到Q2
Q1.pop();
}
if(Q1.empty())
{
sum++;
Q1.push(mid);
}
while(!Q2.empty())//把Q2里的数再放回Q1
{
Q1.push(Q2.top());
Q2.pop();
}
}
printf("%d\n",sum);
}
return 0;
}