HDU - 3998 Sequence

本文介绍了一种求解最长递增子序列(LIS)及其出现次数的方法,通过不断移除序列中的元素并重新计算LIS长度来实现。具体步骤包括使用二分查找优化查找过程,以及标记和移除已计入LIS的元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

There is a sequence X (i.e. x[1], x[2], ..., x[n]). We define increasing subsequence of X 

as x[i1], x[i2],...,x[ik], which satisfies follow conditions: 
1) x[i1] < x[i2],...,<x[ik]; 
2) 1<=i1 < i2,...,<ik<=n 

As an excellent program designer, you must know how to find the maximum length of the 
increasing sequense, which is defined as s. Now, the next question is how many increasing 
subsequence with s-length can you find out from the sequence X. 

For example, in one case, if s = 3, and you can find out 2 such subsequence A and B from X. 
1) A = a1, a2, a3. B = b1, b2, b3. 
2)  Each ai or bj(i,j = 1,2,3) can only be chose once at most. 

Now, the question is: 
1) Find the maximum length of increasing subsequence of X(i.e. s). 
2) Find the number of increasing subsequence with s-length under conditions described (i.e. num).

Input

The input file have many cases. Each case will give a integer number n.The next line will 

have n numbers.OutputThe output have two line. The first line is s and second line is num.Sample Input
4
3 6 2 5
Sample Output
2
2

 

题解:

    int sum = 1;

    持续求LIS并把每次的数都删去,如果LIS长度不变则sum++,否则停止并输出sum。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int MAXN = 100005;

int book[MAXN]; /*记录最小末尾数在board的下标*/ 
bool mark[MAXN];/*标记该整数是否删除*/
int board[MAXN];/*存储整数*/
int pre[MAXN];/*记录每个整数的前接整数在board的下标*/
int MaxLen;/*第一次的LIS*/

int B_S(int a,int len){
	int left = 0;
	int right = len;
	while(left<right){
		int mid = left+(right-left)/2;
		if(board[book[mid]]>=a)right = mid;
		else left = mid+1;
	}
	return left;
}

int LIS(int length){
	int len = 0;
	memset(book,-1,sizeof(book));
	memset(pre,-1,sizeof(pre));
	for(int i=0 ; i<length ; i++){
		if(mark[i]){
			int temp = B_S(board[i],len);
			if(book[temp] == -1)len++;
			book[temp] = i;
			if(temp)pre[i] = book[temp-1];
		}
	}
	int t = book[len-1];
	while(t != -1){
		mark[t] = false;
		t = pre[t];
	}
	return len;
}


int main(){
	
	int N;
	while(scanf("%d",&N)!=EOF){
		for(int i=0 ; i<N ; i++)scanf("%d",&board[i]);
		memset(mark,true,sizeof(mark));
		MaxLen = LIS(N);
		int T;
		int sum = 1;
		while(T = LIS(N)){
			if(T == MaxLen)sum++;
			else break;
		}
		printf("%d\n%d\n",MaxLen,sum);
	}
	
	return 0;
} 

HDU1160是一个经典的动态规划问题,题目描述如下: 给定一组老鼠的体重和速度,要求找出最长的老鼠序列,使得序列中每只老鼠的体重和速度都严格递增。 我们可以使用动态规划来解决这个问题。具体步骤如下: 1. 将老鼠按体重或速度排序。 2. 使用动态规划数组`dp`,其中`dp[i]`表示以第`i`只老鼠结尾的最长序列长度。 3. 使用一个数组`pre`来记录每个位置的前驱老鼠,以便最后可以重建序列。 以下是使用Java实现的代码: ```java import java.util.*; class Mouse implements Comparable<Mouse> { int weight, speed, index; Mouse(int weight, int speed, int index) { this.weight = weight; this.speed = speed; this.index = index; } public int compareTo(Mouse other) { if (this.weight != other.weight) { return this.weight - other.weight; } else { return this.speed - other.speed; } } } public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); List<Mouse> mice = new ArrayList<>(); while (scanner.hasNext()) { int weight = scanner.nextInt(); int speed = scanner.nextInt(); mice.add(new Mouse(weight, speed, mice.size())); } scanner.close(); Collections.sort(mice); int n = mice.size(); int[] dp = new int[n]; int[] pre = new int[n]; int maxLen = 1, endIndex = 0; Arrays.fill(pre, -1); Arrays.fill(dp, 1); for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { if (mice.get(i).weight > mice.get(j).weight && mice.get(i).speed > mice.get(j).speed) { if (dp[j] + 1 > dp[i]) { dp[i] = dp[j] + 1; pre[i] = j; } } } if (dp[i] > maxLen) { maxLen = dp[i]; endIndex = i; } } List<Integer> sequence = new ArrayList<>(); while (endIndex != -1) { sequence.add(mice.get(endIndex).index + 1); endIndex = pre[endIndex]; } System.out.println(maxLen); for (int i = sequence.size() - 1; i >= 0; i--) { System.out.println(sequence.get(i)); } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值