hdu 3998 Sequence 贪心算法+最长递增子序列+二分查找(好题目)

题意:给定一个数组,求该数组中严格最长递增子序列的长度和相应的最长子序列的个数,在求最长子序列的有多少种时,数组中每一个元素只能使用一次

思路:1. 求最长递增子序列的长度时,我们使用二分查找的方法求,具体的操作是维护一个辅助数组,这个辅助数组dp[k]中保存着当前已经获得最长递增子序列,k表示当前的辅助数组中递增序列的个数,当处理原数组中下一个元素data[i]时,

1)若data[i] > dp[k - 1]时, 直接dp[k++] = data[i];

2)   否则,使用二分查找在dp中找到第一个不大于data[i]的元素的位置j, 使得dp[j] = data[i];

这样当遍历结束整个原数组时,我们也就找到了其中一个最长递增子序列, 最长递增子序列的长度必然也就知道了。

2. 此处我们还要求若存在最长递增子序列时,原数组中每一个元素只能使用一次,即该元素在最长递增子序列A中出现后,就不能在其他的最长子序列中在出现了,问有多少种?

这个时候我们只需用一个标记数组,对原序列的每个元素进行标记就行了,多次重复步骤1),直到没有满足最长递增子序列的子序列出现。


hdu 3998 Sequence  源代码如下

#include <iostream>
#include <algorithm>
using namespace std;

#define N 11000
int data[N];
int dp[N];
bool flag[N];

int binarySearch(int a[], int n, int key)
{
	int left = 0, right = n - 1;
	int mid;

	while(left <= right)
	{
		mid = left + (right - left ) / 2;
		if (a[mid] == key)
		{
			return mid;
		}
		else if (a[mid] < key)
		{
			left = mid + 1;
		}
		else
		{
			right = mid - 1;
		}
	}

	return left;
}

int main()
{
	int i, j, n, num, maxLen, k;
	while(scanf("%d", &n) != EOF)
	{
		for (i = 0;i < n; ++i)
		{
			scanf("%d", &data[i]);
		}
		memset(flag, 0, sizeof(flag));
		k = 0;
		maxLen = 0;
		num = 0;
		while(true)
		{
			k = 0;
			for (i = 0;i < n; ++i)
			{
				if (flag[i])
				{
					continue;
				}

				if (dp[k - 1] < data[i])
				{
					dp[k++] = data[i];
					flag[i] = true;
				}
				else
				{
					j =  binarySearch(dp, k, data[i]);
					dp[j] = data[i];
					
				}
				
			}

			if (maxLen < k)
			{
				maxLen = k;
				num = 1;

			}
			else if (maxLen == k)
			{
				++num;
			}
			else
			{
				break;
			}
		}

		printf("%d\n%d\n", maxLen, num);

	}

	return 0;
}


发布了101 篇原创文章 · 获赞 1 · 访问量 6万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览