关于最大匹配,最小点覆盖,最少路径覆盖和最大独立集的总结

最小点覆盖:

点覆盖的概念定义
对于图G=(V,E)中的一个点覆盖是一个集合S⊆V使得每一条边至少有一个端点在S中。

最小点覆盖:就是点覆盖中点的个数最少的集合S。

最小边覆盖:

边覆盖的概念定义:
边覆盖是图的一个边子集,使该图上每一节点都与这个边子集中的一条边关联,只有含孤立点的图没有边覆盖,边覆盖也称为边覆盖集,图G的最小边覆盖就是指边数最少的覆盖,图G的最小边覆盖的边数称为G的边覆盖数。

最大匹配:

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。

最大独立集:

最大独立集:在N个点的图G中选出m个点,使这m个点两两之间没有边的点中,m的最大值。

最小路径覆盖:

定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点。

(1)二分图的最大匹配

匈牙利算法(可以用最大流做,但一般匈牙利要快不少)。


(2)二分图的最小点覆盖

二分图的最小点覆盖 = 二分图的最大匹配


(3)二分图的最少边覆盖

二分图的最少边覆盖 = 点数 - 二分图的最大匹配


(4)二分图的最大独立集

二分图的最大独立集 = 点数 - 二分图的最大匹配


(5)有向无环图的最少不相交路径覆盖

我们把原图中的点V拆成两个点Vx和Vy,对于原图中的边A−>B,我们在新图中连Ax−>By。

那么最少不相交路径覆盖=原图的点数-新图的最大匹配

 

(6)有向无环图的最少可相交路径覆盖

先用floyd求出原图的传递闭包, 如果a到b有路, 那么就加边a->b。 然后就转化成了最少不相交路径覆盖问题。

例题:POJ - 2594 Treasure Exploration

(7)有向无环图中最少不相交路径覆盖和最大独立集的相互转化

用偏序集,一般可以抽象为有向无环图。建议先看看这篇博客

Dilworth定理:有向无环图的最大独立集=有向无环图最少不相交路径覆盖

 

(8)二分图的带权最大匹配

KM算法。(可以用最小费用最大流做)

### PyCharm 打开文件显示全的解决方案 当遇到PyCharm打开文件显示全的情况时,可以尝试以下几种方法来解决问题。 #### 方法一:清理缓存并重启IDE 有时IDE内部缓存可能导致文件加载异常。通过清除缓存再启动程序能够有效改善此状况。具体操作路径为`File -> Invalidate Caches / Restart...`,之后按照提示完成相应动作即可[^1]。 #### 方法二:调整编辑器字体设置 如果是因为字体原因造成的内容显示问题,则可以通过修改编辑区内的文字样式来进行修复。进入`Settings/Preferences | Editor | Font`选项卡内更改合适的字号大小以及启用抗锯齿功能等参数配置[^2]。 #### 方法三:检查项目结构配置 对于某些特定场景下的源码视图缺失现象,可能是由于当前工作空间未能正确识别全部模块所引起。此时应该核查Project Structure的Content Roots设定项是否涵盖了整个工程根目录;必要时可手动添加遗漏部分,并保存变更生效[^3]。 ```python # 示例代码用于展示如何获取当前项目的根路径,在实际应用中可根据需求调用该函数辅助排查问题 import os def get_project_root(): current_file = os.path.abspath(__file__) project_dir = os.path.dirname(current_file) while not os.path.exists(os.path.join(project_dir, '.idea')): parent_dir = os.path.dirname(project_dir) if parent_dir == project_dir: break project_dir = parent_dir return project_dir print(f"Current Project Root Directory is {get_project_root()}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值