Problem Description
“那天TA说TA要来,于是我就来啦。
那天我说我要来,于是你就来啦。
TA看到了什么?
你又看到了什么?
我看到你们在一起,我是真的很happy:)
太阳在哪里啊?
就在早上七八点。
太阳在哪里啊?
就在云的栖息地!”
——2050主题曲
2050的线下活动吸引了很多心怀梦想的年轻人。
小伙们打算组团去参加。他们一共有 n+m+2k 个人,包括 n+k 个男生,m+k 个女生,其中 k 对男女生为异性情侣,现在他们要找房间住。房间有三种类型,双人间 a 元一间,三人间 b 元一间,这两种只能同性一起住。情侣间能住一对异性情侣,一间 c 元。除了情侣间以外,其他房间都可以不住满。
求最少花多少钱,能让小伙伴们都有地方住。
Input
第一行一个整数 T (1≤T≤50) 表示数据组数。
接下来 T 组数据,每组数据一行 6 个整数 n,m,k,a,b,c,其中 0≤n,m,k≤10^3,0≤a,b,c≤10^9。
Output
对于每组数据输出一行一个数,表示所有人住下来所需要的最小花费。
Sample Input
2 3 0 1 1 3 3 3 3 2 1 6 2
Sample Output
3 6
题解:
暴力法O(n^2)
我们先不考虑情侣间,只考虑同性房间,这样男生和女生处理起来就是一样的。假如有同性N人,开x个双人间,y个三人间最便宜,那么我们就可以通过for循环x来暴力出x和y的值,再通过计算a*x+b*y得到同性人数为N时最便宜花费。以此类推,我们可以用同样的方法求出0到max(n+k,m+k)对应的最便宜花费,然后通过枚举情侣间来求最终结果。
#include <bits/stdc++.h>
using namespace std;
long long board[5005];
const long long INF = 0x3f3f3f3f3f3f3f3f;
int main(){
int T;
cin >> T;
long long n,m,k,a,b,c;
while(T--){
cin >> n >> m >> k >> a >> b >> c;
memset(board,INF,sizeof board);
for(int i=0 ; i<=n+m+k ; ++i){
for(int x=0 ; x<=i/2 ; ++x){
int y = (i-x*2)/3;
if((i-x*2)%3)++y;
board[i] = min(board[i],x*1LL*a+y*1LL*b);
}
if(i%2)board[i] = min(board[i],((i+1)/2)*1LL*a);//这里注意特判
}
long long ans = INF;
for(int i=0 ; i<=k ; ++i){
ans = min(ans,i*1LL*c+board[n+k-i]+board[m+k-i]);
}
cout << ans << endl;
}
return 0;
}
背包O(n)
简单背包,注意考虑不住满的情况就行了。
#include <bits/stdc++.h>
using namespace std;
long long board[5005];
const long long INF = 0x3f3f3f3f3f3f3f3f;
int main(){
int T;
cin >> T;
long long n,m,k,a,b,c;
while(T--){
cin >> n >> m >> k >> a >> b >> c;
memset(board,INF,sizeof board);
board[0] = 0;//这里别忘了
for(int i=2 ; i<=n+m+k+10 ; ++i)board[i] = min(board[i],board[i-2]+a);
for(int i=3 ; i<=n+m+k+10 ; ++i)board[i] = min(board[i],board[i-3]+b);
for(int i=n+m+k+9 ; i>0 ; --i)board[i] = min(board[i],board[i+1]);//考虑不住满的情况
long long ans = INF;
for(int i=0 ; i<=k ; ++i)ans = min(ans,i*1LL*c+board[n+k-i]+board[m+k-i]);
cout << ans << endl;
}
return 0;
}