font_path : string //字体路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = '黑体.ttf' width : int (default=400) //输出的画布宽度,默认为400像素 height : int (default=200) //输出的画布高度,默认为200像素 prefer_horizontal : float (default=0.90) //词语水平方向排版出现的频率,默认 0.9 (所以词语垂直方向排版出现频率为 0.1 ) mask : nd-array or None (default=None) //如果参数为空,则使用二维遮罩绘制词云。如果 mask 非空,设置的宽高值将被忽略,遮罩形状被 mask 取代。除全白(#FFFFFF)的部分将不会绘制,其余部分会用于绘制词云。如:bg_pic = imread('读取一张图片.png'),背景图片的画布一定要设置为白色(#FFFFFF),然后显示的形状为不是白色的其他颜色。可以用ps工具将自己要显示的形状复制到一个纯白色的画布上再保存,就ok了。 scale : float (default=1) //按照比例进行放大画布,如设置为1.5,则长和宽都是原来画布的1.5倍。 min_font_size : int (default=4) //显示的最小的字体大小 font_step : int (default=1) //字体步长,如果步长大于1,会加快运算但是可能导致结果出现较大的误差。 max_words : number (default=200) //要显示的词的最大个数 stopwords : set of strings or None //设置需要屏蔽的词,如果为空,则使用内置的STOPWORDS background_color : color value (default=”black”) //背景颜色,如background_color='white',背景颜色为白色。 max_font_size : int or None (default=None) //显示的最大的字体大小 mode : string (default=”RGB”) //当参数为“RGBA”并且background_color不为空时,背景为透明。 relative_scaling : float (default=.5) //词频和字体大小的关联性 color_func : callable, default=None //生成新颜色的函数,如果为空,则使用 self.color_func regexp : string or None (optional) //使用正则表达式分隔输入的文本 collocations : bool, default=True //是否包括两个词的搭配 colormap : string or matplotlib colormap, default=”viridis” //给每个单词随机分配颜色,若指定color_func,则忽略该方法。 fit_words(frequencies) //根据词频生成词云 generate(text) //根据文本生成词云 generate_from_frequencies(frequencies[, ...]) //根据词频生成词云 generate_from_text(text) //根据文本生成词云 process_text(text) //将长文本分词并去除屏蔽词(此处指英语,中文分词还是需要自己用别的库先行实现,使用上面的 fit_words(frequencies) ) recolor([random_state, color_func, colormap]) //对现有输出重新着色。重新上色会比重新生成整个词云快很多。 to_array() //转化为 numpy array to_file(filename) //输出到文件
#导入wordcloud模块和matplotlib模块 from wordcloud import WordCloud,ImageColorGenerator import matplotlib.pyplot as plt from scipy.misc import imread #读取一个txt文件 text = open('test.txt','r').read() #读入背景图片 bg_pic = imread('3.png') #生成词云 wordcloud = WordCloud(mask=bg_pic,background_color='white',scale=1.5).generate(text) image_colors = ImageColorGenerator(bg_pic) #显示词云图片 plt.imshow(wordcloud) plt.axis('off') plt.show() #保存图片 wordcloud.to_file('test.jpg')
wordcloud参数
最新推荐文章于 2023-12-18 09:10:16 发布