HDU 1869 floyd 求两点间的最短距离

求两点之间的最短距离

//memset(map, 0x1ffffff, sizeof(map));//错误的初始化方式

正确使用memset的方式是,初始指定的是8位的数值。比如说memset(map, 0x3f, sizeof(map)); 则map如果是int类型,则被初始化为4个3f 即 0x3f3f3f3f

#include <iostream>
using namespace std;
#define N 105
int n, m;
int map[N][N];
void floyd()
{
	for(int i = 0; i < n; i++)
		for(int j = 0; j < n; j++)
			for(int k = 0; k < n; k++)
			{
				if(map[j][i] + map[i][k] < map[j][k])
					map[j][k] = map[j][i] + map[i][k];
			}
}
int main()
{
	while(~scanf("%d %d", &n, &m))
	{
		//memset(map, 0x1ffffff, sizeof(map));//错误的初始化方式
		for(int i = 0; i < N; i++)
			for(int j = 0; j < N; j++)
				map[i][j] = 0x1fffffff;
		int x, y;
		for(int i = 0; i < m; i++)
		{
			scanf("%d %d", &x, &y);
			map[x][y] = map[y][x] = 1;
		}
		for(int i = 0; i < n; i++)
			map[i][i]  = 0;
		floyd();
		int flag = 0;
		for(int i = 0; i < n && flag == 0; i++)
		{
			for(int j = 0; j < n; j++)
			{
				if(map[i][j] > 7)
				{
					flag = 1;
					break;
				}
			}
		}
		if(flag == 1)
			cout << "No" << endl;
		else 
			cout << "Yes" << endl;
	}
	return 0;
}


 

### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点的最短路径。它的时复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中节点优化其他两节点的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时复杂度完全可以接受。此外,空也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值