题目大意:
给定两个数n,k,n个城市,k次航班,然后给出n*(n-1)条航班记录,前(n-1)行代表第一个城市分别到其他城市的航班,如果消费为0,则代表没有航班,例如第一个样例,前两行表第一个城市到第二个城市和打三个城市的所有航班,接下来的(n-1)行,代表第二个城市到第一个城市和第三个城市的,现在要求出从第一个城市出发,经过k次航班,到达第n个城市所需要的最小花费是多少?
思路:
状态转移方程:dp[i][j]表示经过j次航班,到达城市i的最小花费
dp[i][j]初始为无穷大,dp[1][0]=0;
dp[i][j]=min(dp[i-1][j]+cost[i][j][c],dp[i][j]);
cost[i][j][c]表示从城市i到城市j第c天所需要花费的钱。
代码:
#include <iostream>
using namespace std;
#include <cstring>
#include <stdio.h>
const int MAXN = 1005;
const int INF = 0x3f3f3f3f;
const int N = 15;
int d[N][MAXN],day[N][N],cost[N][N][MAXN];
int n,k;
int dp() {
for(int q = 1; q <= k; q++ ) {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(i == j)
continue;
int temp = (q - 1) % day[j][i];
if(cost[j][i][temp] && d[j][q - 1] != INF)
d[i][q] = min(d[i][q],d[j][q - 1] + cost[j][i][temp]);
}
}
}
return d[n][k];
}
int main() {
int T = 1;
bool first = true;
while(scanf("%d %d",&n,&k) && n + k) {
/*if(first)
first = false;
else
printf("\n");*/
memset(cost,0,sizeof(cost));
for(int i = 0; i <= n; i++)
for(int j = 0; j <= k; j++)
d[i][j] = INF;
d[1][0] = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(i != j) {
scanf("%d",&day[i][j]);
for(int q = 0; q < day[i][j]; q++) {
scanf("%d",&cost[i][j][q]);
}
}
}
}
int ans = dp();
printf("Scenario #%d\n",T++);
if(ans != INF)
printf("The best flight costs %d.\n\n",ans);
else
printf("No flight possible.\n\n");
}
return 0;
}