QCA 基本概念
QCA是一个集合三种主要分析类型(布尔集、多值集、模糊集)在内的涵盖性术语。
- 当明确指向初始的布尔版本的定性比较分析方法,应使用csQCA(清晰集定性比较分析);
- 当明确指向多范畴条件版本的定性比较分析方法,应使用mvQCA(多值集定性比较分析);
- 当明确指向连接模糊集和真值表分析的模糊集版本的定性比较分析方法,应使用 fsQCA(模糊集定性比较分析)。
软件介绍
- QCA-DOS 针对清晰集分析的原始程序
- TOSMANA :多值集定性比较程序
- FSQCA 模糊集版本的定性比较程序
fsQCA
模糊集
- 模糊集由于结合了集合隶属的类别(kind)和程度(degree),因此常被评价为同时具有了定性和定量的属性。
模糊集隶属分数
- 模糊集通过允许取[0]和[1]之间的部分隶属分数,延伸了清晰集,其背后思想是允许集合分数的刻度化,即允许部分隶属。
- 特例:按照以上的定义,0.5是一个定性定位点,但0.5是评估案例时是否隶属或者不隶属一个集合的最大模糊点。
清晰集与模糊集
| 清晰集 | 三值模糊集 | “连续”模糊集 |
|---|

模糊集定性比较分析(QCA)是一种综合布尔、多值和模糊集的分析方法,包括csQCA、mvQCA和fsQCA。fsQCA利用模糊集的隶属分数进行分析,允许部分隶属,适用于处理定性和定量数据的融合。模糊集的隶属分数可以是0到1之间的任何值,通过非、AND和OR运算进行处理。QCA软件如QCA-DOS、TOSMANA和FSQCA分别用于清晰集、多值集和模糊集分析。正确应用模糊集需要依据理论校准隶属分数,例如在定义富裕国家集合时,应设置清晰的锚点来确定隶属分数。
最低0.47元/天 解锁文章
3283

被折叠的 条评论
为什么被折叠?



