海滩上有一堆桃子,五只猴子来分。第一只猴子把这堆桃子平均分为五份,多了一个,这只猴子把多的一个扔入海中,拿走了一份。第二只猴子把剩下的桃子又平均分成五份,又多了一个,它同样把多的一个扔入海中,拿走了一份,第三、第四、第五只猴子都是这样做的,问海滩上原来最少有多少个桃子?
思路一:
假设原来有桃子数量peaches;每次剩余桃子数量temp_peaches;
由于每次剩余的桃子都可以被分成5份且多一个(前四次),所以temp_peaches满足 temp_peaches%5==1,若满足,则更新剩余桃子数量 temp_peaches = (temp_peaches - 1)// 5 * 4,直到第五只猴子,如果五只猴子都符合条件,表示找到答案;
peaches取值由1往上递增,直到满足上述条件,此时桃子数量最少
程序示例:
def calculate_min_peaches():
peaches = 0
while True:
peaches += 1
count = 0
temp_peaches = peaches
for i in range(5):
if temp_peaches % 5 != 1: # 判断是否符合第一只猴子拿走后的情况
break
count += 1
temp_peaches = (temp_peaches - 1) // 5 * 4 # 更新剩余桃子数量
if count == 5: # 如果五只猴子都符合条件,表示找到答案
return peaches
min_peaches = calculate_min_peaches()
print("海滩上原来最少有{}个桃子".format(min_peaches))
程序结果:
思路二:
假设第五只猴子分到的桃子数量是x;则可推算出第五只猴子分桃时桃子数量 t = 5*x+1;
由于每次分完都会留下四份,所以剩下数量应是4的倍数,即 t % 4 == 0,若满足,则往上继续推算,得到第一只猴子分桃时的数量,即一开始桃子的数量;
x取值由1往上递增,直到满足上述条件,此时桃子数量最少
程序示例:
def find_minimum_peaches():
# 假设第五只猴子拿到的是1个桃子
x = 1
# 倒推计算原来的桃子数量
while True:
t = 5 * x + 1 # 第五只猴子分桃时,剩下的桃子的数量
index = 1
# 由于每次分完都剩四份,所以每次剩下数量应是4的倍数
for _ in range(4):
if t % 4 != 0:
break
t = t // 4 * 5 + 1
else:
# 如果for循环没有被break,则说明满足条件
return t
x += 1
# 找到最少的桃子数量
minimum_peaches = find_minimum_peaches()
print("海滩上原来最少有{}个桃子。".format(minimum_peaches))
程序结果: