最近开始入迁移学习的坑。在此必须感谢一下知乎用户@王晋东不在家,他做了超级详细的关于迁移学习的归纳整理,从最新文章到可以上手的代码,应有尽有:
http://transferlearning.xyz/
开始正文!
文章:A Survey on Transfer Learning
这篇文章可以说是十分经典了,对迁移学习的历史、分类、遇到的挑战都做了很详尽的解释。
1. 迁移学习的重要性
传统的机器学习/数据挖掘只有在训练集数据和测试集数据都来自同一个feature space(特征空间)和统一分布的时候才运行的比较好,这意味着每一次换了数据都要重新训练模型,太麻烦了。比如:
(1)从数据类型/内容上看,对于新的数据集,获取新的训练数据很贵也很难。
(2)从时间维度上看,有些数据集很容易过期,即不同时期的数据分布也会不同。比如对于某个用户进行室内wifi定位的时候,把他在一个很大的室内的数据标记好已经很难了,wifi信号强弱还会受到时间影响,所以如果对于每个时间段都要进行一次训练那就太麻烦了。。
2. 概念
记住两对概念就好了:domain(域)和task(任务),source(源)和target(目标),然后给它们进行自由组合。
domain:包括两部分:1.feature space(特征空间);2.probability(概率)。所以当我们说domain不同的时候,就得分两种情况。可能是feature space不同,也可能是feature space一样但probability不同。
task:包括两部分:1. label space(标记空间);2.objective predictive function(目标预测函数)。同理,当我们说task不同的时候,就得分两种情况。可能是label space不同,也可能是label space一样但function不同。
source和target就不用说了,前者是用于训练模型的域/任务,后者是要用前者的模型对自己的数据进行预测/分类/聚类等机器学习任务的域/任务。
3. 迁移学习的分类
3.1. 从问题角度来看
(1)迁移什么?
哪一部分知识可以被迁移?
(2)怎么迁移?
那当然就是训练出适合的模型啦。
(3)什么时候需要用到迁移学习?
当source domain和target domain没什么关系或者太不相同的时候,迁移效果可能就不那么好了,甚至可能会比不迁移的时候表现要更差,这个就叫做negative transfer了。
可以看到,迁移学习的能力也是有限的,所以我们需要关注迁移学习的边界在哪里,比如用conditional Kolmogorov complexity去衡量tasks之间的相关性。
作者指出,现在很多工作都