安装 pytorch---1.2.0【各种版本pytorch安装 合集】

其他的方法我都安装失败了,用下面这个命令行安装成功:

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

其他版本的,点这里

======

-加更=============================

新知道的安装pytorch成功的命令语句
Windows的:

pip install -U https://download.pytorch.org/whl/cu100/torch-1.1.0-cp37-cp37m-win_amd64.whl

Linux的:

pip install -U https://download.pytorch.org/whl/cu90/torch-1.1.0-cp37-cp37m-linux_x86_64.whl

tips:cu100说明是cuda10.0版本,cu90是cuda9.0版本,37说明适配python3.7版本,35就是适配python3.5版本
后面的可以自己根据版本的情况进行更替,如果了解需要版本的适配cuda和python版本直接改数字也可。具体适配情况还是看上面其他版本部分的链接

【仅此作为自己的记录】

### 解决 `pip` 安装 PyTorch 1.2.0 版本时找不到满足要求的版本问题 当遇到 `pip` 无法找到特定版本PyTorch 的情况,通常是因为默认索引中不包含该版本。为了确保能够安装指定版本PyTorchtorchvision,建议按照官方推荐的方式进行操作。 #### 使用官方源安装 对于 PyTorch 1.2.0 及其依赖项(如 torchvision),可以利用 PyTorch 提供的稳定版下载链接来完成安装: ```bash pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html ``` 这条命令指定了确切的版本号,并通过 `-f` 参数指向了一个额外的 URL 来查找这些包的位置[^4]。 #### 创建并配置虚拟环境 为了避免与其他 Python 库发生冲突以及更好地管理项目依赖关系,强烈建议在一个新的 Conda 或者 venv 虚拟环境中执行上述安装过程。以下是基于 Conda 的具体做法: ```bash conda create -n pytorch1.2.0 python=3.6.5 conda activate pytorch1.2.0 pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html ``` 这组指令首先创建了一个名为 `pytorch1.2.0` 的新环境,并设置了合适的 Python 版本;接着激活此环境后再运行前面提到过的 `pip` 命令来进行软件包的安装[^3]。 #### 验证安装结果 一旦完成了以上步骤,在继续之前应该验证所安装组件的功能正常与否。虽然不能直接使用 `nvcc -V` 测试 CUDA 是否可用,但是可以通过导入 PyTorch 并检查 GPU 支持状态来做初步确认: ```python import torch print(torch.cuda.is_available()) ``` 如果返回 True,则说明当前系统已经正确设置好了 CUDA 加速功能[^2]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值