2019-04-16更新
- 修复极验页面改版,这次采用极验官方的demo地址:https://www.geetest.com/demo/slide-bind.html
- 截止2019-04-16,极验和腾讯的两个滑动验证码都是能保证比较高的成功率通过的
- 如何在无界面服务器上搭建selenium运行环境,可以参考我的另一篇文章:https://blog.csdn.net/vwycm/article/details/88639146
- 完整代码github地址见底部
2018-09-20更新
- 新增对腾讯滑动验证码
https://007.qq.com/online.html?ADTAG=capt.slide
的支持,本地测试通过率70左右,有待优化中,
主要失败在计算距离上,大家有好的想法欢迎提出。 - Run with TencentCrawler.java
- 腾讯滑动验证码破解的思路和极验滑动验证码略微不同,腾讯只会返回一张完整图片,导致没法通过两张图片比对的方式来计算移动距离。
所以只能通过一张图来计算距离,这里计算的方式是通过y轴上至少找到一条长度为30px的白线
。另外此处直接通过http请求的方式来下载的原图,这么做有两个原因- 截图的方式会对那条关键白线的像素点有所干扰,计算的时候不太方便
- 返回到前端的图片并没有像极验那样对图片做混淆
2018-09-18更新
- 更新移动轨迹算法,成功率90左右,感谢Ouyang-Wenbin提供的代码。
2018-09-08更新
- 页面改版,导致截图拿到的两张图片一样。
- 另外原有的移动轨迹算法成功率有所下降,目前本地测试成功率50%左右。
2018-06-12更新
- 17年8月份初次分享出来的时候还是可用的,在极验后台更新以后。成功率急剧下降。
- 再加上威锋网也更新了,之前的demo也不可用了。个人原因也一直没有更新。
- 现在是极验官网作为demo。
- 现在的破解思路和之前大致相同,不过也省了很多事。之前版本其实有点麻烦弯路,不知道selenium提供了截图的api。导致自己通过css去还原图片,比较麻烦。现在极验也是通过canvas的方式对图片做的还原,没有以前那么容易还原了。所以当前版本直接采用截图的形式。
- 另外需要注意的是selenium截图的一个坑,不确定是否由我自己环境导致的,我当前测试环境是mac pro。具体表现网页截图分辨率大小和网页原本的分辨率大小不一致,这种情况可能导致在取某个element时拿不到想要的元素。
- 最核心的依然是移动轨迹的算法,这次采用的一种看起来很简单的轨迹,就是一个像素点的移动。本地测试了10次,通过了10次,测试通过率100%。
Quick Start
- 修改GeetestCrawlerV2中自己环境的ChromeDriver地址。
- Run with GeetestCrawlerV2.java
分割线以下是原文
摘要
分析验证码素材图片混淆原理,并采用selenium模拟人拖动滑块过程,进而破解验证码。
人工验证的过程
- 打开威锋网注册页面(https://passport.feng.com/?r=user/register)
- 移动鼠标至小滑块,一张完整的图片会出现(如下图1)
- 点击鼠标左键,图片中间会出现一个缺块(如下图2)
- 移动小滑块正上方图案至缺块处
- 验证通过
selenium模拟验证的过程
- 加载威锋网注册页面(https://passport.feng.com/?r=user/register)
- 下载图片1和缺块图片2
- 根据两张图片的差异计算平移的距离x
- 模拟鼠标点击事件,点击小滑块向右移动x
- 验证通过
详细分析
- 打开chrome浏览器控制台,会发现图1所示的验证码图片并不是极验后台返回的原图。而是由多个div拼接而成(如下图3)
通过图片显示div的style属性可知,极验后台把图片进行切割加错位处理。把素材图片切割成10 * 58大小的52张小图,再进行错位处理。在网页上显示的时候,再通过css的background-position属性对图片进行还原。以上的图1和图2都是经过了这种处理。在这种情况下,使用selenium模拟验证是需要对下载的验证码图片进行还原。如上图3的第一个div.gt_cut_fullbg_slice标签,它的大小为10px * 58px,其中style属性为background-image: url("http://static.geetest.com/pictures/gt/969ffa43c/969ffa43c.webp"); background-position: -157px -58px;
会把该属性对应url的图片进行一个平移操作,以左上角为参考,向左平移157px,向上平移58px,图片超出部分不会显示。所以上图1所示图片是由26 * 2个10px * 58px大小的div组成(如下图4)。每一个小方块的大小58 * 10
- 下载图片并还原,上一步骤分析了图片具体的混淆逻辑,具体还原图片的代码实现如下,主要逻辑是把原图裁剪为52张小图,然后拼接成一张完整的图。
/** *还原图片 * @param type */ private static void restoreImage(String type) throws IOException { //把图片裁剪为2 * 26份 for(int i = 0; i < 52; i++){ cutPic(basePath + type +".jpg" ,basePath + "result/" + type + i + ".jpg", -moveArray[i][0], -moveArray[i][1], 10, 58); } //拼接图片 String[] b = new String[26]; for(int i = 0; i < 26; i++){ b[i] = String.format(basePath + "result/" + type + "%d.jpg", i); } mergeImage(b, 1, basePath + "result/" + type + "result1.jpg"); //拼接图片 String[] c = new String[26]; for(int i = 0; i < 26; i++){ c[i] = String.format(ba