博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
1、项目介绍
技术栈:Python语言、 MySQL数据库 Django框架 Echarts可视化 、 协同过滤推荐算法 html
2、项目界面
(1)美食列表
(2)美食详情页
(3)美食推荐—基于用户、基于物品
(4)可视化分析1
(2)词云图分析
(3)折线图分析
(4)饼图分析
(5)个人中心
(6)美食分类
(7)注册登录
(8)后台数据管理
3、项目说明
摘要
随着大数据与人工智能时代的到来,传统行业都发生了翻天覆地的变化,餐饮行业也不例外,但是在转型的过程中也会面临诸多挑战。在不同的领域应用经典的方法也会面临很多挑战,为此,本文在将推荐系统应用到美食中的时候,融合美食领域的特点,并使用协同过滤推荐算法应用于现实美食中用来解决面临的实际问题,设计并实现了一个以 B/S 架构为基础的美食推荐系统。
本系统使用Python语言结合Django框架进行开发,运用协同过滤推荐算法,完成通过用户的行为向其推荐美食的目的。后端主要使用Django框架,前端页面的开发选择了Bootstrap框架和HTML。利用MySQL数据库存储美食信息。本系统的前端用户模块主要包括注册、登录、美食标签分类、美食推荐、美食列表、美食排序等、后台管理模块主要包括用户管理、美食美食管理、用户权限管理等。推荐算法方面同时含有基于用户的协同过滤以及基于物品的协同过滤推荐,该系统具有一定的应用价值。
关键词:美食推荐; 协同过滤算法; Python语言;Django框架;可视化;
4、核心代码
# -*-coding:utf-8-*-
import os
os.environ["DJANGO_SETTINGS_MODULE"] = "recommend.settings"
import django
django.setup()
from item.models import *
from math import sqrt, pow
import operator
from django.db.models import Subquery, Q, Count
# from django.shortcuts import render,render_to_response
class UserCf:
# 获得初始化数据
def __init__(self, all_user):
self.all_user = all_user
# 通过用户名获得列表,仅调试使用
def getItems(self, username1, username2):
return self.all_user[username1], self.all_user[username2]
# 计算两个用户的皮尔逊相关系数
def pearson(self, user1, user2): # 数据格式为:美食id,浏览此
sum_xy = 0.0 # user1,user2 每项打分的成绩的累加
n = 0 # 公共浏览次数
sum_x = 0.0 # user1 的打分总和
sum_y = 0.0 # user2 的打分总和
sumX2 = 0.0 # user1每项打分平方的累加
sumY2 = 0.0 # user2每项打分平方的累加
for movie1, score1 in user1.items():
if movie1 in user2.keys(): # 计算公共的浏览次数
n += 1
sum_xy += score1 * user2[movie1]
sum_x += score1
sum_y += user2[movie1]
sumX2 += pow(score1, 2)
sumY2 += pow(user2[movie1], 2)
if n == 0:
# print("p氏距离为0")
return 0
molecule = sum_xy - (sum_x * sum_y) / n # 分子
denominator = sqrt((sumX2 - pow(sum_x, 2) / n) * (sumY2 - pow(sum_y, 2) / n)) # 分母
if denominator == 0:
return 0
r = molecule / denominator
return r
# 计算与当前用户的距离,获得最临近的用户
def nearest_user(self, current_user, n=1):
distances = {}
# 用户,相似度
# 遍历整个数据集
for user, rate_set in self.all_user.items():
# 非当前的用户
if user != current_user:
distance = self.pearson(self.all_user[current_user], self.all_user[user])
# 计算两个用户的相似度
distances[user] = distance
closest_distance = sorted(
distances.items(), key=operator.itemgetter(1), reverse=True
)
# 最相似的N个用户
print("closest user:", closest_distance[:n])
return closest_distance[:n]
# 给用户推荐美食
def recommend(self, username, n=3):
recommend = {}
nearest_user = self.nearest_user(username, n)
for user, score in dict(nearest_user).items(): # 最相近的n个用户
for movies, scores in self.all_user[user].items(): # 推荐的用户的美食列表
if movies not in self.all_user[username].keys(): # 当前username没有看过
if movies not in recommend.keys(): # 添加到推荐列表中
recommend[movies] = scores*score
# 对推荐的结果按照美食
# 浏览次数排序
return sorted(recommend.items(), key=operator.itemgetter(1), reverse=True)
# 基于用户的推荐
def recommend_by_user_id(user_id):
user_prefer = UserTagPrefer.objects.filter(user_id=user_id).order_by('-score').values_list('tag_id', flat=True)
current_user = User.objects.get(id=user_id)
# 如果当前用户没有打分 则看是否选择过标签,选过的话,就从标签中找
# 没有的话,就按照浏览度推荐15个
if current_user.rate_set.count() == 0:
if len(user_prefer) != 0:
movie_list = xiangmu.objects.filter(tags__in=user_prefer)[:15]
else:
movie_list = xiangmu.objects.order_by("-c9")[:15]
return movie_list
# 选取评分最多的10个用户
users_rate = Rate.objects.values('user').annotate(mark_num=Count('user')).order_by('-mark_num')
user_ids = [user_rate['user'] for user_rate in users_rate]
user_ids.append(user_id)
users = User.objects.filter(id__in=user_ids)#users 为评分最多的10个用户
all_user = {}
for user in users:
rates = user.rate_set.all()#查出10名用户的数据
rate = {}
# 用户有给美食打分 在rate和all_user中进行设置
if rates:
for i in rates:
rate.setdefault(str(i.movie.id), i.mark)#填充美食数据
all_user.setdefault(user.username, rate)
else:
# 用户没有为美食打过分,设为0
all_user.setdefault(user.username, {})
user_cf = UserCf(all_user=all_user)
recommend_list = [each[0] for each in user_cf.recommend(current_user.username, 15)]
movie_list = list(xiangmu.objects.filter(id__in=recommend_list).order_by("-c9")[:15])
other_length = 15 - len(movie_list)
if other_length > 0:
fix_list = xiangmu.objects.filter(~Q(rate__user_id=user_id)).order_by('-collect')
for fix in fix_list:
if fix not in movie_list:
movie_list.append(fix)
if len(movie_list) >= 15:
break
return movie_list
# 计算相似度
def similarity(movie1_id, movie2_id):
movie1_set = Rate.objects.filter(movie_id=movie1_id)
# movie1的打分用户数
movie1_sum = movie1_set.count()
# movie_2的打分用户数
movie2_sum = Rate.objects.filter(movie_id=movie2_id).count()
# 两者的交集
common = Rate.objects.filter(user_id__in=Subquery(movie1_set.values('user_id')), movie=movie2_id).values('user_id').count()
# 没有人给当前美食打分
if movie1_sum == 0 or movie2_sum == 0:
return 0
similar_value = common / sqrt(movie1_sum * movie2_sum)#余弦计算相似度
return similar_value
#基于物品
def recommend_by_item_id(user_id, k=15):
# 前三的tag,用户评分前三的美食
user_prefer = UserTagPrefer.objects.filter(user_id=user_id).order_by('-score').values_list('tag_id', flat=True)
user_prefer = list(user_prefer)[:3]
print('user_prefer', user_prefer)
current_user = User.objects.get(id=user_id)
# 如果当前用户没有打分 则看是否选择过标签,选过的话,就从标签中找
# 没有的话,就按照浏览度推荐15个
if current_user.rate_set.count() == 0:
if len(user_prefer) != 0:
movie_list = xiangmu.objects.filter(tags__in=user_prefer)[:15]
else:
movie_list = xiangmu.objects.order_by("-c9")[:15]
print('from here')
return movie_list
# most_tags = Tags.objects.annotate(tags_sum=Count('name')).order_by('-tags_sum').filter(movie__rate__user_id=user_id).order_by('-tags_sum')
# 选用户最喜欢的标签中的美食,用户没看过的30部,对这30部美食,计算距离最近
un_watched = xiangmu.objects.filter(~Q(rate__user_id=user_id), tags__in=user_prefer).order_by('?')[:30] # 看过的美食
watched = Rate.objects.filter(user_id=user_id).values_list('movie_id', 'mark')
distances = []
names = []
# 在未看过的美食中找到
for un_watched_movie in un_watched:
for watched_movie in watched:
if un_watched_movie not in names:
names.append(un_watched_movie)
distances.append((similarity(un_watched_movie.id, watched_movie[0]) * watched_movie[1], un_watched_movie))#加入相似的美食
distances.sort(key=lambda x: x[0], reverse=True)
print('this is distances', distances[:15])
recommend_list = []
for mark, movie in distances:
if len(recommend_list) >= k:
break
if movie not in recommend_list:
recommend_list.append(movie)
# print('this is recommend list', recommend_list)
# 如果得不到有效数量的推荐 按照未看过的美食中的热度进行填充
print('recommend list', recommend_list)
return recommend_list
if __name__ == '__main__':
# similarity(2003, 2008)
print(recommend_by_item_id(1799))
5、项目获取
biyesheji0005 或 biyesheji0001 (绿色聊天软件)
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻