机器学习毕业设计 基于Python食谱推荐系统 营养推荐 食谱数据分析 美食推荐系统 Flask框架 毕业设计✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

技术栈:Python语言、 Flask框架、 Echarts可视化 MySQL数据库、HTML

前端: html css js juery bootstrap Echarts
后端:flask (python语言后端框架)
数据库: mysql
数据分析库:
numpy pandas matplotlib 数据处理
WordCloud 词云
jieba 分词

2、项目界面

(1)可视化分析大屏

在这里插入图片描述

(2)食谱推荐
在这里插入图片描述

(3)食谱详情

在这里插入图片描述

(4)注册登录

在这里插入图片描述

3、项目说明

1. 可视化分析大屏

  • 功能描述:展示食谱相关的数据分析结果,如热门食材、营养成分分布、用户偏好等。
  • 技术实现
    • 使用 Echarts 绘制各种可视化图表,如柱状图、饼图、折线图等。
    • 通过 Flask 后端从 MySQL 数据库中提取数据,并传递到前端页面。
    • 使用 HTML/CSS/JavaScript 构建前端页面,展示图表和数据。

2. 食谱推荐

  • 功能描述:根据用户的偏好、营养需求或历史记录,推荐合适的食谱。
  • 技术实现
    • 使用 Python 的数据分析库(如 PandasNumpy)处理用户数据和食谱数据。
    • 结合 Flask 后端实现推荐逻辑,可能采用基于规则的推荐或简单的协同过滤算法。
    • 将推荐结果通过 HTML 页面展示给用户。

3. 食谱详情

  • 功能描述:展示单个食谱的详细信息,包括食材清单、烹饪步骤、营养成分等。
  • 技术实现
    • MySQL 数据库中查询特定食谱的详细数据。
    • 使用 Flask 后端将数据传递到前端。
    • 通过 HTML/CSS/Bootstrap 构建美观的食谱详情页面,提升用户体验。

4. 注册登录

  • 功能描述:允许用户注册新账号或登录已有账号,以便保存用户偏好和历史记录。
  • 技术实现
    • 使用 Flask 提供用户认证功能,包括用户注册、登录和密码管理。
    • 使用 MySQL 数据库存储用户信息,包括用户名、密码(加密存储)、偏好设置等。
    • 前端使用 HTML/CSS/JavaScript 构建注册和登录表单,并通过 Flask 后端进行验证和处理。

4、核心代码

import json
import random
import time

import requests
from lxml import etree


def get_fenlei():
    url = "https://www.douguo.com/fenlei"
    headers = {
        "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36"
    }

    try:
        response = requests.get(url=url, headers=headers)
    except Exception as e:
        print("ERROR: 分类获取失败", url)
        return

    html = etree.HTML(response.text)
    first_classify_items = html.xpath('//h2[@class="title sorttit"]')
    classify_list = list()
    for first_classify in first_classify_items:
        first_title = "".join(first_classify.xpath('./text()')).strip()
        second_classify_items = first_classify.xpath('./following-sibling::div[1]/div[@class="sort-item"]')
        for second_classify in second_classify_items:
            second_title = "".join(second_classify.xpath('./h2/text()')).strip()
            third_classify_items = second_classify.xpath('./ul[@class="sortlist clearfix"]/li/a')
            for third_classify in third_classify_items:
                third_title = "".join(third_classify.xpath('./text()')).strip()
                third_link = "".join(third_classify.xpath('./@href')).strip()
                third_link = "https://www.douguo.com" + third_link
                classify_list.append(
                    {
                        "first_title": first_title,
                        "second_title": second_title,
                        "third_title": third_title,
                        "third_link": third_link
                    }
                )
    return classify_list


def get_items(classify):
    headers = {
        "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36"
    }
    item_url = classify["third_link"]
    try:
        response = requests.get(url=item_url, headers=headers)
    except Exception as e:
        print("ERROR: 列表页获取失败", item_url)
        return
    html = etree.HTML(response.text)
    items = html.xpath('//li[@class="clearfix"]')
    items = items[:5] if len(items) > 5 else items
    for item in items:
        detail_url = "https://www.douguo.com" + item.xpath('./a[@class="cook-img"]/@href')[0]
        stat = "".join(item.xpath('./div/div[@class="score"]/span[contains(text(), "分")]/text()')).strip()
        # item.xpath('./div/div[@class="score"]/span[contains(text(), "分")]/text()')
        stat = stat.replace("分", "").strip()
        classify["detail_url"] = detail_url
        classify["stat"] = stat
        file.write("{}\n".format(json.dumps(classify, ensure_ascii=False)))


if __name__ == '__main__':
    # 获取食谱分类
    classify_list = get_fenlei()
    print("classify_list:", len(classify_list))

    # 采集每个分类下的食谱,翻页
    file = open("cookbook.txt", "w", encoding="utf-8")
    for index, classify in enumerate(classify_list, start=1):
        print("第 {} 个分类".format(index))
        get_items(classify)
        time.sleep(random.random())

    file.close()

5、项目获取

biyesheji0005  或  biyesheji0001   (绿色聊天软件)

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值