Java连接redis,springboot整合redis,springboot连接redis集群,redis使用场景及面试题

1. springboot连接redis

使用redisTemplate该类可以存放任意类型的数据,但是该类型的数据必须实现序列,获取redis中对应的数据时,会进行反序列化。 如果使用RedisTemplate建议大家指定key,value,以及hashkey的序列化方式。

package com.dxl.config;

import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.CachingConfigurerSupport;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheConfiguration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.*;

import java.time.Duration;

@EnableCaching
@Configuration
public class RedisConfig extends CachingConfigurerSupport {
    //比如验证码
    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        RedisSerializer<String> redisSerializer = new StringRedisSerializer();
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        template.setConnectionFactory(factory);
        //key序列化方式
        template.setKeySerializer(redisSerializer);
        //value序列化
        template.setValueSerializer(jackson2JsonRedisSerializer);
        //value hashmap序列化
        template.setHashValueSerializer(jackson2JsonRedisSerializer);
        return template;
    }

    @Bean
    public CacheManager cacheManager(RedisConnectionFactory factory) {
        RedisSerializer<String> redisSerializer = new StringRedisSerializer();
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        //解决查询缓存转换异常的问题
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        // 配置序列化(解决乱码的问题),过期时间600秒
        RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()
                .entryTtl(Duration.ofSeconds(600)) //缓存过期10分钟 ---- 业务需求。
                .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(redisSerializer))//设置key的序列化方式
                .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(jackson2JsonRedisSerializer)) //设置value的序列化
                .disableCachingNullValues();
        RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
                .cacheDefaults(config)
                .build();
        return cacheManager;
    }
}

2. springboot连接redis集群。

(1)哨兵

spring.redis.sentinel.master=mymaster
spring.redis.sentinel.nodes=192.168.213.188:26379

(2) 去中心化集群

spring.redis.cluster.nodes=192.168.213.188:8001,192.168.213.188:8002,192.168.213.188:8003,192.168.213.188:8004,192.168.213.188:8005,192.168.213.188:8006

3. redis使用场景

(1)作为缓存。

1.为什么使用缓存?
   减少数据库的访问频率。 提高数据的访问率。

2.什么样的数据适合放入缓存?
    1.热点数据。 2. 修改频率比较低。3.安全系数低的。

缓存的原理:

在这里插入图片描述

如何使用缓存

(1)搭建一个springboot+mp的工程

(2)引入redis相关的依赖

(3)配置redis

(4)service代码

package com.dxl.service;

import com.dxl.dao.DeptDao;
import com.dxl.entity.Dept;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;


@Service
public class DeptService {

    @Resource
    private DeptDao deptDao;

    @Autowired
    private RedisTemplate redisTemplate;

    public Dept findById(Integer deptId){
        //1.从缓存中查询该数据
        Object o = redisTemplate.opsForValue().get("findById::" + deptId);
        if(o!=null){//表示从缓存中获取该数据
            return (Dept) o;
        }
        Dept dept = deptDao.selectById(deptId);
        redisTemplate.opsForValue().set("findById::"+deptId,dept);//把查询的结果放入缓存
        return dept;
    }


    //数据库和缓存同步问题!
    public int delete(Integer deptId){
        redisTemplate.delete("findById::"+deptId);//删除缓存
        int i = deptDao.deleteById(deptId);
        return i;
    }

    public int update(Dept dept){
        redisTemplate.delete("findById::"+dept.getDeptId());//删除缓存
        int i = deptDao.updateById(dept);
        redisTemplate.opsForValue().set("findById::"+dept.getDeptId(),dept);
        return i;
    }
}

上面这些代码每次都要写很多与业务无关的一些非业务代码!

(1)使用aop来解决---->动态代理(动态代理的实现模式基于JDK动态代理)
https://blog.csdn.net/qq_39470733/article/details/77315010
(2)基于spring的缓存注解。
package com.dxl;

import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cache.annotation.EnableCaching;

@SpringBootApplication
@MapperScan(basePackages = "com.ykq.dao")
@EnableCaching //开启缓存的注解
public class SpringbootRedis02Application {

    public static void main(String[] args) {
        SpringApplication.run(SpringbootRedis02Application.class, args);
    }

}



package com.dxl.service;

import com.dxl.dao.DeptDao;
import com.dxl.entity.Dept;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cache.annotation.CacheEvict;
import org.springframework.cache.annotation.CachePut;
import org.springframework.cache.annotation.Cacheable;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;


@Service
public class DeptService {

    @Resource
    private DeptDao deptDao;

    //该注解作用:会先查询缓存,如果缓存存在,则不会执行代码块。 如果缓存中不存在则执行该方法,并把该方法的返回值存放到redis中
    @Cacheable(cacheNames = "findById",key = "#deptId")  //缓存的key值 为findById
    public Dept findById(Integer deptId){
        System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
        Dept dept = deptDao.selectById(deptId);
        return dept;
    }


    //数据库和缓存同步问题!
    // beforeInvocation:是否在方法执行前就清空,缺省为 false,
    // 如果指定为 true,则在方法还没有执行的时候就清空缓存。缺省情况下,如果方法执行抛出异常,则不会清空缓存。
    @CacheEvict(cacheNames = "findById",key = "#deptId")
    public int delete(Integer deptId){
        int i = deptDao.deleteById(deptId);
        return i;
    }

    //这个注解是必须执行方法体,而且会把方法体执行的结果放入到缓存中。 如果发生异常则不操作缓存。
    @CachePut(cacheNames = "findById",key = "#dept.deptId")
    public Dept update(Dept dept){
        int i = deptDao.updateById(dept);
        return dept;
    }
}

(2)作为分布式锁

(3)作为点赞量videaId,0 incr(videaId),排行榜,转发量。

什么是计数器,如电商网站商品的浏览量、视频网站视频的播放数等。为了保证数据实时效,每次浏览都得给+1,并发量高时如果每次都请求数据库操作无疑是种挑战和压力。Redis提供的incr命令来实现计数器功能,内存操作,性能非常好,非常适用于这些计数场景 。 
关系型数据库在排行榜方面查询速度普遍偏慢,所以可以借助redis的SortedSet进行热点数据的排序。 在奶茶活动中,我们需要展示各个部门的点赞排行榜, 所以我针对每个部门做了一个SortedSet,然后以用户的openid作为上面的username,以用户的点赞数作为上面的score, 然后针对每个用户做一个hash, 通过zrangebyscore就可以按照点赞数获取排行榜,然后再根据username获取用户的hash信息,这个当时在实际运用中性能体验也蛮不错的。 

(4)限时业务的运用

redis中可以使用expire命令设置一个键的生存时间,到时间后redis会删除它。利用这一特性可以运用在限时的优惠活动信息、手机验证码等业务场景。 

使用redis作为分布式锁。

锁场景:

package com.dxl.distributedlock.service;

import com.dxl.distributedlock.dao.StockDao;
import com.dxl.distributedlock.entity.Stock;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;


@Service
public class StockService02 {

    @Resource
    private StockDao stockDao;

    public String decrStock(Integer productId) {//synchronized () 同步方法    同步代码块
         //查询对应的id的库存
        synchronized (this) {
            Stock stock = stockDao.selectById(productId);
            if (stock.getNum() > 0) {
                //根据id修改库存
                stock.setNum(stock.getNum() - 1);
                stockDao.updateById(stock);
                System.out.println("库存剩余:" + (stock.getNum()));
                return "库存减少成功";
            } else {
                return "库存不足";
            }
        }
    }
}

这种锁不适合分布式项目。

在这里插入图片描述

使用redis解决分布式锁的问题

package com.dxl.distributedlock.service;

import com.dxl.distributedlock.dao.StockDao;
import com.dxl.distributedlock.entity.Stock;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;
import java.util.concurrent.TimeUnit;


@Service
public class StockService {

    @Resource
    private StockDao stockDao;

    @Autowired
    private StringRedisTemplate redisTemplate;

    public String decrStock(Integer productId) {//synchronized () 同步方法    同步代码块
        Boolean flag = redisTemplate.opsForValue().setIfAbsent("product::" + productId, "ykq",30, TimeUnit.SECONDS);
        //查询对应的id的库存
         if(flag) {//获取锁了
             try {
                 Stock stock = stockDao.selectById(productId);
                 if (stock.getNum() > 0) {
                     //根据id修改库存
                     stock.setNum(stock.getNum() - 1);
                     stockDao.updateById(stock); //异常发生
//                   int c=10/0;
                     System.out.println("库存剩余:" + (stock.getNum()));
                     return "库存减少成功";
                 } else {
                     return "库存不足";
                 }
             }catch (Exception e){
                  throw  new RuntimeException(e.getMessage());
             }
             finally {
                 redisTemplate.delete("product::" + productId);//释放锁资源 一定再finally
             }
         }else{
             System.out.println("服务器正忙请稍后再试..........");
             return "服务器正忙请稍后再试..........";
         }
    }
}

使用第三方组件redisson-----专门用于解决分布式问题。

       <dependency>
            <groupId>org.redisson</groupId>
            <artifactId>redisson</artifactId>
            <version>3.13.4</version>
        </dependency>
   @Bean
    public RedissonClient getRedisson(){
        Config config=new Config();
        config.useSingleServer().setAddress("redis://192.168.213.188:6379");
        RedissonClient redissonClient = Redisson.create(config);
        return redissonClient;
    }
package com.dxl.distributedlock.service;

import com.dxl.distributedlock.dao.StockDao;
import com.dxl.distributedlock.entity.Stock;
import org.redisson.Redisson;
import org.redisson.api.RLock;
import org.redisson.api.RedissonClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;
import java.util.concurrent.TimeUnit;


@Service
public class StockService {

    @Resource
    private StockDao stockDao;

    @Autowired
    private RedissonClient redisson; 

    public String decrStock(Integer productId) {//synchronized () 同步方法    同步代码块
        RLock lock = redisson.getLock("product::" + productId);//获取锁对象
        try {
            lock.tryLock(60,20,TimeUnit.SECONDS); //自己别设置时间。
            Stock stock = stockDao.selectById(productId);
            if (stock.getNum() > 0) {
                //根据id修改库存
                stock.setNum(stock.getNum() - 1);
                stockDao.updateById(stock); //异常发生
//                   int c=10/0;
//                Thread.sleep(35000);
                System.out.println("库存剩余:" + (stock.getNum()));
                return "库存减少成功";
            } else {
                return "库存不足";
            }
        }catch (Exception e){
             throw  new RuntimeException(e.getMessage());
        }
        finally {
            lock.unlock();
        }
    }
}

4. redis的面试题

1. redis缓存穿透? 如何避免缓存穿透。
   (1)数据库中没有该记录,而缓存中没有该记录。而这时有人恶意访问这种数据。 直接访问数据库。

解决方案:
   (1) 如果数据库中不存在该对象,则往缓存中放入一个空对象,并且设置很短的过期时间。
   
2.缓存的雪崩?如何避免?
  (1)再某一时刻,缓存中没有该记录,而这时会有大量的请求。这些请求打压到数据库。
       比如: 项目刚刚上线。------预访问热点数据。
             某一个缓存的时间到了。----> 失效时间是一个散列值。
             使用队列: ----->每次有限的请求访问数据库。
             
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值