HDU 2258

题目: http://acm.hdu.edu.cn/showproblem.php?pid=2258


跟HDU 3295 是一样的消去方法。。感觉这题比 3295还容易点,可能是因为先打3295,总体思路差不多所以感觉容易点了。=  =!。。直接按题意模拟即可。。没什么细节问题。


下面是AC代码:


#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
using namespace std;

char map[25][25];
char temp_map[25][25];
bool vis[25][25];
bool mark[25][25];
int n,m,ans,cur_max;
int dir[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
bool cheack(int x,int y){
     return x>=0&&x<n&&y>=0&&y<m;
     return false;
}
void dfs(int x,int y,char color){
     for(int i=0;i<4;i++){
        int nx=x+dir[i][0],ny=y+dir[i][1];
        if(cheack(nx,ny)&&!vis[nx][ny]&&temp_map[nx][ny]==color){
           vis[nx][ny]=true;
           temp_map[nx][ny]='0';
           cur_max+=1;
           dfs(nx,ny,color);
        }
     }
}
void move_zero(){
    vector<char > temp[25];
    int len=0,i,j;
    for( i=0;i<m;i++){
       for( j=n-1;j>=0;j--)
           if(map[j][i]>'0') break;

        if(j>=0){
           for(int j=n-1;j>=0;j--){
               if(map[j][i]>'0')
                temp[len].push_back(map[j][i]);
           }
           for(int j=temp[i].size();j<n;j++)
                temp[len].push_back('0');
            len++;
        }
    }
    for(int i=len;i<m;i++){
       for(int j=0;j<n;j++)
        temp[i].push_back('0');
    }

    for(int i=0;i<n;i++)
      for(int j=0;j<m;j++){
        map[i][j]=temp[j][n-1-i];
    }
//    for(int i=0;i<m;i++){
//      for(int j=0;j<n;j++)
//       cout<<map[i][j]<<" ";
//       cout<<endl;
//    }
}
int main(){
    int cnt;
    while(scanf("%d%d",&n,&m)!=EOF){

         for(int i=0;i<n;i++)  scanf("%s",map[i]);

         ans=0;
         while(1){
             cnt=0;
             for(int i=0;i<n;i++)  for(int j=0;j<m;j++)  temp_map[i][j]=map[i][j];

             for(int i=0;i<n;i++){
               for(int j=0;j<m;j++)
                 if(temp_map[i][j]>'0'){
                    memset(vis,false,sizeof(vis));
                    cur_max=1;     vis[i][j]=true;

                    dfs(i,j,temp_map[i][j]);

                    if(cnt<cur_max){
                        cnt=cur_max;
                        for(int l=0;l<n;l++) for(int k=0;k<m;k++)
                          mark[l][k]=vis[l][k];
                    }
                 }
             }
             if(cnt<=1) break;
             ans+=cnt*(cnt-1);
            for(int i=0;i<n;i++)
             for(int j=0;j<m;j++)
             if(mark[i][j]){
                map[i][j]='0';
             }
             move_zero();
         }
         cout<<ans<<endl;

    }
    return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值