题目链接:poj 1190
生日蛋糕
Time Limit: 1000MS Memory Limit: 10000K
Description
7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。
(除Q外,以上所有数据皆为正整数)
Input
有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
Output
仅一行,是一个正整数S(若无解则S = 0)。
Sample Input
100
2
Sample Output
68
一开始没搞懂,看了一下题解才理解了题意,奶油只涂外层表面不涂叠加部分神马的,R和H都是正整数神马的。
思路比较简单,很好想,层数已知,每一层半径从大搜到小(从大往小搜似乎效率要更高?discuss里面很多人从小往大搜都T掉了),搜到底就停,搜的过程中和当前较优解比较找到最优。
重点是剪枝,用到了不等式的放缩,剪枝效果奇佳,前后的差异是从TLE到0ms.感觉十分神奇,是有什么数学上的证明?还是说可能是数据本身比较正好?
代码参考了一下discuss
关于那个神奇的剪枝的数学证明:说说最重要的剪枝的数学含义
#include <iostream>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <ctime>
#include <cmath>
#include <queue>
#include <map>
#define M 25
#define INF 0x3f3f3f3f
using namespace std;
int n, m, minv[M], mins[M], ans;
void init()
{
ans = INF;
for(int i = 1; i < M; i++)//后面配合剪枝用的一个预处理
minv[i] = minv[i - 1] + i * i * i,//第i层的最小体积
mins[i] = mins[i - 1] + 2 * i * i;//第i层的最小面积
}
void dfs(int lev, int R, int H, int V, int s)//lev:上面还有几层待定,R、H:当前层R和H的上限,V:余下体积/PI,s:即题目中要求的S.
{
if(!lev)
{
if(s < ans && !V)
ans = s;
return;
}
if(V <= 0) return;
//↓↓↓决定代码是否tle的重要剪枝部分,第二个条件效果极佳
if(s + mins[lev] >= ans || 2 * V / R + s >= ans || V < minv[lev]) return;
for(int i = R - 1; i >= lev; i--)
for(int j = H - 1; j >= lev; j--)
dfs(lev - 1, i, j, V - i * i * j, s + 2 * i * j);
}
int main()
{
init();
scanf("%d %d", &n, &m);
for(int i = M; i > 0; i--)
for(int j = M; j > 0; j--)
if(n - i * i * j >= 0)
dfs(m - 1, i, j, n - i * i * j, i * i + 2 * i * j);
if(ans == INF)
printf("0\n");
else
printf("%d\n", ans);
return 0;
}
运行结果: