#今日论文推荐# 爱丁堡大学最新《因果机器学习: 医疗健康与精准医疗应用》2022综述

#今日论文推荐# 爱丁堡大学最新《因果机器学习: 医疗健康与精准医疗应用》2022综述

因果机器学习(CML)在医疗保健领域越来越受欢迎。除了将领域知识添加到学习系统的固有能力之外,CML还提供了一个完整的工具集,用于研究系统对干预的反应(例如,给定治疗的结果)。量化干预的效果使我们能够在混杂因素存在的情况下做出可行的决策,同时保持鲁棒性。在此,我们将探讨因果推理如何利用机器学习的最新进展,纳入临床决策支持系统的不同方面。在本文中,我们使用阿尔茨海默病创建的例子来说明如何CML可以在临床场景中是有利的。此外,我们讨论了医疗保健应用中存在的重要挑战,如处理高维和非结构化数据,推广到非分布样本和时间关系,尽管研究社区的巨大努力仍有待解决。最后,我们回顾了因果表征学习、因果发现和因果推理的研究路线,这些研究为解决上述挑战提供了潜力。
随着强大的机器学习(ML)方法(如深度学习[1])的出现,医疗健康预测系统取得了相当大的进展。在医疗保健领域,临床决策支持(CDS)工具可以对诸如医学图像、临床免费文本注释、血液测试和遗传数据等电子健康记录(EHR)数据进行检测、分类和/或分割等任务进行预测。这些系统通常使用监督学习技术进行训练。然而,大多数由ML技术支持的CDS系统只学习数据中变量之间的关联,而不区分因果关系和(虚假)相关性

以精准医疗(也被称为个性化医疗)为目标的CDS系统需要回答关于个人对干预会如何反应的复杂问题。例如,针对阿尔茨海默病(AD)的精确CDS系统应该能够量化使用给定药物治疗患者对最终结果的影响,例如预测随后的认知测试得分。即使有合适的数据和完美的性能,目前的ML系统也只能根据之前数据的相关性来预测最佳的治疗,这可能不能代表可操作的信息。当信息能够根据给定患者的不同情况(如治疗结果与未治疗结果)之间的比较做出治疗(介入)决定时,信息被定义为可操作的。这种系统需要因果推理(CI)来进行可操作的个体化治疗效果预测。
在医疗健康中,一个主要的上游挑战是如何获得必要的信息来对治疗和结果进行因果推理。现代医疗健康数据是多模态、高维且通常是非结构化的。在进行预测时,必须考虑到来自医学图像、基因组学、临床评估和人口统计的信息。多模态方法可以更好地模拟人类专家如何利用信息进行预测。此外,许多疾病是随着时间的推移而发展的,因此必须考虑到时间(时间维度)。最后,任何系统都必须确保这些预测能够在不同的部署环境(如不同的医院、城市或国家)中推广。有趣的是,CI和ML之间的联系可以帮助缓解这些挑战。ML允许因果模型通过学习变量之间复杂的非线性关系来处理高维和非结构化数据。CI利用专家知识对系统进行了额外的理解,提高了多模态数据的信息融合,提高了当前ML系统的泛化和可解释性。
因果机器学习(CML)文献提供了几个方向来解决上述挑战时使用观察数据。在此,我们将CML分为三个方向: (i) 学习给定高维数据的因果表示,学习提取低维信息(因果)变量及其因果关系;因果发现——给定一组变量,学习它们之间的因果关系; (iii) 因果推理——给定一组变量及其因果关系,分析系统将如何对干预作出反应。我们在图1中说明了如何将这些CML方向集成到医疗健康中。在这篇文章中,我们讨论了CML如何可以改善个性化决策,以及帮助减轻紧迫的挑战在CDS系统。我们回顾了CML的代表性方法,解释了如何在医疗健康上下文中使用它们。特别地,我们 (i) 提出因果关系和因果模型的概念;(二)说明它们如何在医疗健康环境中发挥作用; (iii) 讨论紧迫的挑战,如处理高维和非结构化数据、分布泛化和时间信息; (iv) 综述CML的潜在研究方向。
什么是因果性?
我们对因果关系有一个宽泛的定义:如果A是原因,B是结果,那么B的值依赖于A。由于因果关系是有方向性的,反之则不成立; A的值不依赖于B。因此,因果关系的概念使分析系统将如何应对干预成为可能。诸如“如果病人接受X治疗,这种疾病会如何发展?”’或者‘如果接受了Y的治疗,这个病人还会经历结果Z吗?需要从因果关系出发来理解干预会如何影响特定的个体。在临床环境中,因果推理可以用于决定哪种治疗将导致最好的结果。例如,在AD场景中,因果关系可以回答这样的问题:“哪种药物A或哪种药物B能在5年内最大程度地减少患者预期的认知衰退?”理想情况下,我们将使用观察(历史)数据来比较替代治疗的结果。然而,“CI”[3]的“根本问题”是,对于每个单位(即患者),我们要么观察治疗A的结果,要么观察治疗B的结果,但不能同时观察两者。这是因为在做出治疗的选择后,我们无法逆转时间来撤消治疗。这些考虑个人假设情况的查询被称为潜在结果。因此,我们只能观察到一个行动的一种潜在后果;未观察到的量变成了反事实。由Pearl [4], Imbens和Rubin[5]开创的因果关系的数学形式主义允许回答这些更具挑战性的问题。大多数ML方法(目前)无法识别因果关系,因为不做假设就根本无法实现CI[4,6]。这些假设中的几个可以通过研究设计或外部语境知识得到满足,但没有一个可以仅仅从观察数据中发现。接下来,我们向读者介绍两种定义和推理因果关系的方法:用结构性因果模型(SCMs)和用潜在结果。
为什么我们要考虑医疗健康中的因果框架?
在过去的几十年里,CI在社会科学、计量经济学、流行病学和病因学等领域做出了一些贡献[4,5],最近它已经扩展到其他医疗健康领域,如医学影像学[14-16]和药理学[2]。在本节中,我们将详细阐述因果关系如何用于改善医疗决策。例如,尽管来自EHRs的数据通常是观察性的,但它们已经成功地用于若干ML应用,如建模疾病进展[18],预测疾病恶化[19]和发现危险因素[20],以及预测治疗反应[21]。此外,我们现在有证据表明,算法在成像任务中实现了超人的性能,如分割[22],检测病理和分类[23]。然而,精确医学试图实现的目标并不是以近乎完美的精度预测特定患者的疾病。相反,我们的目标是建立ML方法,从观察性患者数据中提取可操作的信息,以便做出介入(治疗)决定。这就需要CI,它超越了下面详细介绍的用于预测的标准监督学习方法。为了在患者层面做出可执行的决定,我们需要评估治疗效果。治疗效果是两种潜在结果的差异: 事实结果和反事实结果。为了进行可操作的预测,我们需要算法来学习如何对可能采取不同行动的假设场景进行推理,从而创建一个可以导航的决策边界,以改善患者的结果。最近有证据表明,人类使用反事实推理来做出因果判断[25],这为这种推理假设提供了支持。这就是为什么推断治疗效果的问题与潜在结果框架定义的标准监督学习[2]有本质区别[5,10]。根据定义,当使用观测数据集时,我们从未观察到与事实相反的结果。因此,针对个体的最佳治疗(精准医疗[26]的主要目标)只能通过能够进行因果推理的模型来确定。

论文题目:Education, intelligence and alzheimer’s disease: evidence from a multivariable two-sample mendelian randomization study
详细解读:https://www.aminer.cn/research_report/62f500d87cb68b460f00caceicon-default.png?t=M666https://www.aminer.cn/research_report/62f500d87cb68b460f00cace
AMiner链接:https://www.aminer.cn/?f=cs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值