总结:机器学习之Jaccard相似度

本文介绍了Jaccard相似系数,用于衡量有限样本集之间的相似性,其值介于0到1之间。当集合为空时,Jaccard系数为1。同时提到了Jaccard距离,作为描述集合不相似性的指标,距离越大,样本相似度越低。Jaccard相似性在文本相似度计算中尤其适用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、介绍

Jaccard相似系数 用于比较有限样本集之间的相似性和差异性。

定义:给定两个集合A和B, jaccard 系数定义为A与B交集的大小与并集大小的比值 ,jaccard值越大说明相似度越高。

up-fb7f2cb29e472de4a11179c146e66e1ac70.png

得出的 Jaccard相似系数值在0到1之间。

当A和B都为空时,jaccard(A,B)=1;

与Jaccard 系数相关的指标叫做Jaccard 距离,用于描述集合之间的不相似度。Jaccard 距离越大,样本相似度越低。公式定义如下:
up-b9c81d17003a77f72b3c0855b8bc59c2975.png

二、

参考:

常见文本相似度计算方法简介

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值