杰卡德相似度(Jaccard similarity)

杰卡德相似度是一种衡量两个集合相似性的度量,基于交集与并集的比例。适用于文本处理、推荐系统等领域。计算公式是交集大小除以并集大小。在Python中可用于实现数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先总体上从ChatGPT上了解个大概

杰卡德相似度(Jaccard similarity),也称为杰卡德系数(Jaccard coefficient),是一种用于比较两个集合相似性的度量方法。它基于集合论中的概念, 通过计算两个集合的交集与并集之间的比例 来确定它们的相似程度。

杰卡德相似度的计算公式如下:

J(A, B) = |A ∩ B| / |A ∪ B|

其中,A 和 B 是要比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值