【数论】【不定方程】n元一次不定方程、佩尔方程、毕达哥拉斯定理、费马大定理

不定方程

二元一次不定方程

转化为一元线性同余方程

n n n 元一次不定方程

转化为多元线性同余方程

毕达哥拉斯定理

x 2 + y 2 = z 2 x^2+y^2=z^2 x2+y2=z2 ,当 gcd ⁡ ( x , y , z ) = 1 \gcd(x,y,z)=1 gcd(x,y,z)=1 时被称为本原的毕达哥拉斯三元组。

本 原 的 毕 达 哥 拉 斯 三 元 组 ( x , y , z ) 且 y 为 偶 数 ⇔ ∃ m , n ( m > n , m , n 互 素 , 不 同 奇 偶 ) , x = m 2 − n 2 , y = 2 m n , z = m 2 + n 2 本原的毕达哥拉斯三元组(x,y,z)且y为偶数\Leftrightarrow\exist m,n(m>n,m,n互素,不同奇偶),x=m^2-n^2,y=2mn,z=m^2+n^2 (x,y,z)ym,n(m>n,m,n),x=m2n2,y=2mn,z=m2+n2

费马大定理

x n + y n = z n , n ≥ 3 , n ∈ N x^n+y^n=z^n,n\geq 3,n\in N xn+yn=zn,n3,nN 无非 0 0 0 整数解

佩尔方程

第一类佩尔方程

形如: x 2 − d y 2 = 1 , d > 1 x^2-dy^2=1,d>1 x2dy2=1,d>1

d d d 是完全平方数 ⇒ \Rightarrow 无解

解有迭代公式:
x n = x n − 1 x 1 + d y n − 1 y 1 y n = x n − 1 y 1 + y n − 1 x 1 x_{n}=x_{n-1} x_{1}+d y_{n-1} y_{1}\\ y_{n}=x_{n-1} y_{1}+y_{n-1} x_{1} xn=xn1x1+dyn1y1yn=xn1y1+yn1x1
推导:设特解 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2) ,则有 x 1 2 − d y 1 2 = 1 , x 2 2 − d y 2 2 = 1 x_{1}^{2}-d y_{1}^{2}=1,x_{2}^{2}-d y_{2}^{2}=1 x12dy12=1,x22dy22=1 ( x 1 2 − d y 1 2 ) ( x 2 2 − d y 2 2 ) = 1 \left(x_{1}^{2}-d y_{1}^{2}\right)\left(x_{2}^{2}-d y_{2}^{2}\right)=1 (x12dy12)(x22dy22)=1
展开,有 x 1 2 x 2 2 − d x 1 2 y 2 2 − d y 1 2 x 2 2 + d 2 y 1 2 y 2 2 = ( x 1 2 x 2 2 + d 2 y 1 2 y 2 2 ) − d ( x 1 2 y 2 2 + y 1 2 x 2 2 ) = ( x 1 x 2 + d y 1 y 2 ) 2 − d ( x 1 y 2 + x 2 y 1 ) 2 = 1 \begin{aligned} &x_{1}^{2} x_{2}^{2}-d x_{1}^{2} y_{2}^{2}-d y_{1}^{2} x_{2}^{2}+d^{2} y_{1}^{2} y_{2}^{2}\\=&(x_{1}^{2} x_{2}^{2}+d^{2} y_{1}^{2} y_{2}^{2})-d(x_{1}^{2} y_{2}^{2}+y_{1}^{2} x_{2}^{2})\\ =&\left(x_{1} x_{2}+d y_{1} y_{2}\right)^{2}-d\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2}\\ =&1 \end{aligned} ===x12x22dx12y22dy12x22+d2y12y22(x12x22+d2y12y22)d(x12y22+y12x22)(x1x2+dy1y2)2d(x1y2+x2y1)21逐次迭代可得上述迭代公式。

暴力迭代法

y = 1 y=1 y=1 开始枚举验证,每次 + 1 +1 +1

矩阵迭代法

k k k 个迭代解用矩阵表示如下:
[ x k y k ] = [ x 1 d y 1 y 1 x 1 ] k − 1 [ x 1 y 1 ] \left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]=\left[\begin{array}{ll}x_{1} & d y_{1} \\ y_{1} & x_{1}\end{array}\right]^{k-1}\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] [xkyk]=[x1y1dy1x1]k1[x1y1]
求出第一个特解后用矩阵快速幂求得第 k k k 个解。

第二类佩尔方程

形如: x 2 − d y 2 = k , d > 1 x^2-dy^2=k,d>1 x2dy2=k,d>1

解有迭代公式:
x = p x 1 + d q y 1 y = p y 1 + q x 1 x=p x_{1}+d q y_{1}\\y=p y_{1}+q x_{1} x=px1+dqy1y=py1+qx1
其中 ( p , q ) (p,q) (p,q) 是第二类佩尔方程的一个特解, ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 是第一类佩尔方程的最小特解。

推导:根据上述,有 p 2 − d q 2 = k , x 1 2 − d y 1 2 = 1 p^2-dq^2=k,x_{1}^{2}-d y_{1}^{2}=1 p2dq2=k,x12dy12=1 ( x 1 2 − d y 1 2 ) ( p 2 − d y 2 ) = k \left(x_{1}^{2}-d y_{1}^{2}\right)\left(p^{2}-d y^{2}\right)=k (x12dy12)(p2dy2)=k 展开,有
x 1 2 p 2 − d x 1 2 q 2 − d y 1 2 p 2 + d 2 y 1 2 q 2 = ( x 1 2 p 2 + d 2 y 1 2 q 2 ) − d ( x 1 2 q 2 + y 1 2 p 2 ) = ( x 1 p + d y 1 q ) 2 − d ( x 1 q + p y 1 ) 2 = k \begin{aligned} &x_{1}^{2} p^{2}-d x_{1}^{2} q^{2}-d y_{1}^{2} p^{2}+d^{2} y_{1}^{2} q^{2}\\=&(x_{1}^{2} p^{2}+d^{2} y_{1}^{2} q^{2})-d(x_{1}^{2} q^{2}+y_{1}^{2} p^{2})\\ =&\left(x_{1} p+d y_{1} q\right)^{2}-d\left(x_{1} q+p y_{1}\right)^{2}\\ =&k \end{aligned} ===x12p2dx12q2dy12p2+d2y12q2(x12p2+d2y12q2)d(x12q2+y12p2)(x1p+dy1q)2d(x1q+py1)2k
逐次迭代可得上述迭代公式。

对于每一组特解 ( p , q ) (p,q) (p,q) ,第 k k k 个迭代解用矩阵表示如下:
[ x k y k ] = [ p d q q p ] k − 1 [ x 1 y 1 ] \left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]=\left[\begin{array}{ll}p & d q \\ q& p\end{array}\right]^{k-1}\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] [xkyk]=[pqdqp]k1[x1y1]
求出第一个特解后用矩阵快速幂求得第 k k k 个解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值