codeforces #307 E. GukiZ and GukiZiana (分块)

题目:http://codeforces.com/problemset/problem/551/E

题意:给定n个元素的数组,然后操作q次。有两种操作:1、1 l r x 操作类型为1,将[l,r]的所有元素+x 。2、2 x 查询整个区间的最左和最右边的x的距离d1和d2,求d2-d1,不存在x输出-1。

分析:第一次写分块。。。思路很简单,就是将整个数组分成很多块。在cf上看到一份十分简洁的ac代码,参考了一下。

现在考虑时间复杂度。

对于操作1,首先会遍历sqrt(n)个块,然后最多对两个块里面的所有元素(sqrt(n)个)进行遍历(对于完全包含的区间懒惰标记即可),最后还要对完全遍历的块排序,操作1的时间复杂度为O(sqrt(n)+log(sqrt(n)))

对于操作2,同样会遍历sqrt(n)个块,然后对每个块里面的sqrt(n)个元素进行二分查找两次O(log(sqrt(n))),所以操作2的时间复杂度O(sqrt(n)*log(sqrt(n)))

所以总的时间复杂度为O(q*sqrt(n)*log(sqrt(n)))。

代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
const LL INF = 1E9+9;
const int maxn = 1e6+7;
const int D=1000;
pair <LL ,int > p[maxn];
LL v,lazy[maxn];

int main()
{
	int n,q,i,j,l,r,x,y,a,b,t;
	scanf("%d%d",&n,&q);
	for(i=1;i<=n;i++)
	{
		scanf("%lld",&v);
		p[i]=make_pair(v,i);
	}
	for(i=1;i<=n;i+=D)
		sort(p+i,p+min(i+D,n+1));
	while(q--)
	{
		int tp;
		scanf("%d",&tp);
		if(tp==1)
		{
			scanf("%d%d%d",&a,&b,&x);
			for(l=1,t=1;l<=n;l+=D,t++)
			{
				r=min(l+D-1,n);
				if(a>r || b<l)
					continue ;
				if(a<=l && r<=b)
				{
					lazy[t]+=x;
					continue ;
				}
				for(i=l;i<=r;i++)
					if(a<=p[i].second && p[i].second<=b)
						p[i].first+=x;
				sort(p+l,p+r+1);
			}
		}
		else
		{
			scanf("%d",&x);
			int L=n+1,R=0;
			for(l=1,t=1;l<=n;l+=D,t++)
			{
				LL fd=x-lazy[t];
				r=min(l+D-1,n);
				int p1=lower_bound(p+l,p+r+1,make_pair(fd,0))-p;
				int p2=lower_bound(p+l,p+r+1,make_pair(fd+1,0))-p-1;
				if(p1<=p2)
				{
					L=min(L,p[p1].second);
					R=max(R,p[p2].second);
				}
			}
			L<=R?printf("%d\n",R-L):printf("-1\n");
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值