蓝桥杯2012年省赛——棋盘放麦子

文章通过一个编程问题展示了如何使用高精度计算解决棋盘麦粒问题,即在64格的国际象棋棋盘上,每一格放的麦粒数是前一格的两倍。程序使用了高精度乘法和加法计算总麦粒数,最终得出的结果是18446744073709551615粒。
摘要由CSDN通过智能技术生成

题目描述

本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。

你一定听说过这个故事。国王对发明国际象棋的大臣很佩服,问他要什么报酬,大臣说:请在第 1 个棋盘格放 1 粒麦子,在第 2 个棋盘格放 2 粒麦子,在第 3 个棋盘格放 4 粒麦子,在第 4 个棋盘格放8 粒麦子,......后一格的数字是前一格的两倍,直到放完所有棋盘格(国际象棋共有 64 格)。

国王以为他只是想要一袋麦子而已,哈哈大笑。

当时的条件下无法准确计算,但估算结果令人吃惊:即使全世界都铺满麦子也不够用!

请你借助计算机准确地计算,到底需要多少粒麦子。

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 128M

【思路】运用高精度乘法计算出每个棋盘放的麦子数,再用高精度加法计算出麦子的总和

【代码及注释】

#include<bits/stdc++.h>
using namespace std;
vector<int> A,D;
vector<int> mul(vector<int> a,int b)
{
	vector<int> c;
	int t=0;
	for(int i=0;i<a.size();i++)
	{
		t=t+a[i]*b;
		c.push_back(t%10);
		t/=10;
	}
	if(t) c.push_back(t);
	while(c.size()>1&&c.back()==0) c.pop_back();
	return c;
}
vector<int> add(vector<int> &A,vector<int> &B)
{
	if(A.size()<B.size()) return add(B,A);
	//长的放在A的位置
	vector<int> c;
	int t=0;
	for(int i=0;i<A.size();i++)
	{
		t+=A[i];
		if(i<B.size()) t+=B[i];
		c.push_back(t%10);
		t/=10;
	}
	if(t)
		c.push_back(1);
	return c;
}
int main()
{
	A.push_back(1);
	D.push_back(1);
	for(int i=2;i<=64;i++)
	{
		auto c=mul(A,2);
		D=add(D,c);
		A=c;
	}
	reverse(D.begin(),D.end());
	for(int i=0;i<D.size();i++)
		cout<<D[i];
	return 0;
}

【答案】

18446744073709551615

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值