雨落那秋林

点点滴滴

javascript 多行文本 function处理方法 及实践应用

javascript没有标准的多行字符串的表示方法,如C#中的string str=@"多行文本 多行文本";通常使用的是一行一行的加起来,如:var str='多行文本' +'多行文本';或 使用续行符(\)的方法,如:var str = "...

2018-06-02 01:31:32

阅读数 1047

评论数 0

机器学习(11.5)--神经网络(nn)算法的深入与优化(5) -- softmax的代码实现

在前面的 TensorFlow实例(4)--MNIST简介及手写数字分类算法 中用到 TensorFlow自带了一个softmax的激活函数同时  机器学习(11.2)--神经网络(nn)算法的深入与优化(2) -- QuadraticCost、CorssEntropyCost、SoftMax的j...

2018-03-07 21:34:35

阅读数 359

评论数 0

机器学习(11.4)--神经网络(nn)算法的深入与优化(4) -- CorssEntropyCost(交叉熵代价函数)数理分析与代码实现

这篇文章我们将从数理上对CorssEntropyCost进行讲解,同时附上实现的代码可以参考机器学习(11.3)--神经网络(nn)算法的深入与优化(3) -- QuadraticCost(二次方代价函数)数理分析首先我们定义因此在求得最后一层神经元这时我们对最后一层的w,b求偏导数, 我们在si...

2018-03-07 21:22:36

阅读数 115

评论数 0

机器学习(11.3)--神经网络(nn)算法的深入与优化(3) -- QuadraticCost(二次方代价函数)数理分析

        在前面的文章已经对神经网络的基本算法流程做了详细的介绍    机器学习(1)--神经网络初探    机器学习(10.4)--手写数字识别的不同算法比较(4)--神经网络    在这中间使用的就是QuadraticCost(二次方代价函数),其实在我们代码中并没有相关的代码,那这个所...

2018-03-07 21:20:00

阅读数 262

评论数 0

机器学习(11.2)--神经网络(nn)算法的深入与优化(2) -- QuadraticCost、CorssEntropyCost、SoftMax的javascript数据演示测试代码

    本篇文章是数据演示的HTML,如果你不会HTML和JS,把代码复制到一个文本文件中,文本文件命名为test.html,保存后双击运行即可    本文包含 QuadraticCost(二次方代价函数)、CorssEntropyCost(交叉商代价函数)、SoftMax变化演示三部份    1...

2018-03-07 21:14:39

阅读数 96

评论数 0

机器学习(11.1)--神经网络(nn)算法的深入与优化(1)--介绍

在前面的文章已经对神经网络的基本算法流程做了详细的介绍机器学习(1)--神经网络初探机器学习(10.4)--手写数字识别的不同算法比较(4)--神经网络但中间也存在很多不是很明确的地方,同时也存在一些优化的可能本系列文章将对这些相关内容做更深一步的研究与解析这篇文章是本系列的总体介绍、一些说明及一...

2018-03-07 21:12:32

阅读数 89

评论数 0

机器学习(10.4)--手写数字识别的不同算法比较(4)--神经网络

如果你对神经网络还不太了解,又想了解这篇文章,希望你能先看机器学习(1)--神经网络初探在那篇代码中,对神经网络基本原理讲的更细致一些,在这篇文章里,对于weights和biases的设置,我采用了另一种方法,先简单说一下1、在那篇中,biases是在每层神经元(除去最后一层)基础上再加一个补充的...

2018-02-23 15:52:05

阅读数 105

评论数 0

机器学习(10.3)--手写数字识别的不同算法比较(3)--支持向量机(SVM)算法

在之前的文章中我并没有写SVM算法,主要原因在于这个虽然我知道SVM的基本原理,但中间关键的最大化决策边界的算法我写不出来只能使用sklearn提供的方法来求得这个最大化决策边界,不过还好,至少SVM的基本原理不难理解,这篇文章,我将详细说明SVM的基本原理,并用一个简单的小例子(代码段一)来测试...

2018-02-23 15:33:35

阅读数 98

评论数 0

机器学习(10.2)--手写数字识别的不同算法比较(2)--KNN算法

KNN(k-NearestNeighbor)是监督学习的分类技术中最简单的方法之一,K指k个最近的邻居的意思,关于KNN的详细基本实现原理,可参考 机器学习(2)--邻近算法(KNN)tensorflow的实现方式,可参考: tensorflow实例(9)--最邻近算法实现MNIST手写数字分类算...

2018-02-23 15:28:02

阅读数 132

评论数 0

机器学习(10.1)--手写数字识别的不同算法比较(1)--mnist数据集不同版本解析及平均灰度实践

现在网上流行的mnist数据集共有两个版本1、tensorflow 提供的 点击此处下载2、开源标准数据集    点击此处下载连续向下的几篇文章将是一套系列文章,都是对mnist的开源标准数据集进行手写数字识别的在我之前的所有文章多是在tensorflow内容才使用到mnist,因此,基本使用的是...

2018-02-23 15:20:56

阅读数 796

评论数 0

机器学习09--神经网络的激活函数(Activation Function)及python代码实现

在前面的一些关于机器案例中使用了激活函数,如 机器学习(1)--神经网络初探 开篇中的 tanh(x)与tanh_deriv(x)两个函数    TensorFlow实例(5.1)--MNIST手写数字进阶算法(卷积神经网络CNN) 中在最大池化时使用的 tf.nn.relu我们为什么要使用激活函...

2018-02-22 01:29:22

阅读数 1740

评论数 0

tensorflow实例(10)--模型保存与读取,鸢尾花神经网络模型读写

TensorFlow通过tf.train.Saver类实现模型的保存和提取。这样做的好处就如我们在用神经网络训练一个模型,需要非常长的时间,当把这个模型保存后,当要测试或使用这个模型时,把保存的模型提取出来,不需要再次的进行训练关于神经网络的基本原理与tensorflow的实现可参考机器学习(1)...

2018-02-09 23:00:25

阅读数 1513

评论数 0

tensorflow实例(9)--最邻近算法实现MNIST手写数字分类算法

KNN(k-NearestNeighbor)是监督学习的分类技术中最简单的方法之一,K指k个最近的邻居的意思,关于KNN的详细基本实现原理,可参考  机器学习(2)--邻近算法(KNN)这篇文章是用tensorflow来实现,但由于在算出所有点与点之间距离后取出最近的K个时如果只使用tensorf...

2018-02-08 22:09:08

阅读数 96

评论数 0

tensorflow实例(8.2)--梯度下降法计算简单线性回归(Simple Regression Analysis)

简单回归分析(Simple Regression Analysis)定义是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。简单的讲就是如下图,一堆的散点图,找出一条 y=ax平方 + b 的直线最能表示这些散点图,关于简单回归分析的简要介绍可以参考  机器学习(8)--简单线性回归(...

2018-02-08 21:17:29

阅读数 112

评论数 0

tensorflow实例(8.1)--公式法计算简单线性回归(Simple Regression Analysis)

简单回归分析(Simple Regression Analysis)定义是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。简单的讲就是如下图,一堆的散点图,找出一条 y=ax平方 + b 的直线最能表示这些散点图,关于简单回归分析的简要介绍可以参考  机器学习(8)--简单线性回归(...

2018-02-08 21:15:16

阅读数 102

评论数 0

机器学习(8)--简单线性回归(Simple Regression Analysis)

简单回归分析(Simple Regression Analysis)定义是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。简单的讲就是如下图,一堆的散点图,找出一条 y=ax平方 + b 的直线最能表示这些散点图,回归分析主要用于分析预测,如散点图中的点表示以往X表示客流量,Y表示交...

2018-02-08 20:23:32

阅读数 328

评论数 0

tensorflow实例(7)--建立多层神经网络

本文将建立多层神经网络的函数,这个函数是一个简单的通用函数,通过最后的测试,可以建立一些多次方程的模型,并通过matplotlib.pyplot演示模型建立过程中的数据变化情况以下三张图片是生成的效果,每张图的蓝点都表示为样本值,红点表示最终预测效果,本例带有点动画效果,可以更直观的觉数值的变化如...

2018-02-07 22:26:40

阅读数 1420

评论数 0

机器学习(7)--梯度下降法(GradientDescent)的简单实现

曾经在  机器学习(1)--神经网络初探  详细介绍了神经网络基本的算法,在该文中有一句 weights[i] += 0.2 * layer.T.dot(delta) #0.2学习效率,应该是一个小于0.5的数,同时在  tensorflow实例(2)--机器学习初试 篇文章中用tenso...

2018-02-06 20:50:28

阅读数 679

评论数 0

tensorflow实例(6)--机器学习中学习率的实验

曾经在  机器学习(1)--神经网络初探  详细介绍了神经网络基本的算法 同时在  tensorflow实例(2)--机器学习初试 篇文章中用tensorflow实现上述的神经网络算法 但这篇文章只能支持三个神经元(weight),4个神经元时而发生计算不出的,5个神经元算出来的完全不...

2018-02-05 21:32:08

阅读数 140

评论数 0

机器学习(6)--朴素贝叶斯模型算法之鸢尾花数据实验

朴素贝叶斯模型是一种基于贝叶斯定理与特征条件独立假设的分类方法, 是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。 优点:算法逻辑简单,易于实现 缺点:朴素贝叶斯模型前提是假设属性之间相互独立,但这个在现实中往往是不存在的,当属性过多或属性之间相关性大时效果不太好 ...

2018-02-04 00:44:27

阅读数 2541

评论数 2

提示
确定要删除当前文章?
取消 删除