ML_10贝叶斯Bayes

参考了周志华机器学习
李航 统计学习方法和课件
曾志军 机器学习(中译本)

原理

贝叶斯是统计学习过程结合了先验知识和观测数据,与极大似然法的区别就是,贝叶斯会根据新增案例来改变模型,而极大似然法不会。

分类

voting gibbs (optimaler Bayes-Klassifikator)
naiver bayes-klassifikator
bayessche netze
他也用于半监督学习
这个地方留给半监督学习

实际应用出现的问题

先验概率和分布不可得,所以根据背景知识以及观测数据估计
贝叶斯发明出来的时间较早,但是计算量很大,所以随着计算机能力的提升才真正得以使用

概率理论

乘法规则: 两个事件的结合
P ( A ∩ B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(A\cap B)=P(A|B)P(B)=P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A)
加法规则
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B)=P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB)
全概率
已知 ∑ i = 1 N P ( B ∣ A i ) P ( A i ) = P ( B ) \sum_{i=1}^NP(B|A_i)P(A_i)=P(B) i=1NP(BAi)P(Ai)=P(B)
贝叶斯公式
P ( h ∣ D ) = P ( D ∣ h ) P ( h ) P ( D ) P(h|D)=\frac{P(D|h)P(h)}{P(D)} P(hD)=P(D)P(Dh)P(h)
P(D)可以从观测数据中得到的概率
P(D|h)h这个知识体系中,D发生的概率,也就是似然,likelihood
P(h|D) posteriori 后验概率
P(h) priori 先验概率,就是知识体系。

不相关性

如果YZ两个事件不相关 P ( X ∣ Y , Z ) = P ( X ∣ Z ) P(X|Y,Z)=P(X|Z) P(XY,Z)=P(XZ)
例子:
打雷相对于闪电跟下雨没关所以
P(打雷|下雨,闪电)=P(打雷|闪电)

假设选择公式MAP

maximum of posteriori
h M A P = a r g max ⁡ h ∈ H P ( D ∣ h ) P ( h ) P ( D ) = a r g max ⁡ h ∈ H P ( D ∣ h ) P ( h ) , P ( D ) = c o n s t . h_{MAP}=arg\max_{h\in H}\frac{P(D|h)P(h)}{P(D)}=arg\max_{h\in H}P(D|h)P(h),P(D) = const. hMAP=argmaxhHP(D)P(Dh)P(h)=argmaxhHP(Dh)P(h),P(D)=const.
而对于最大似然法(maximum likelihood)来说,他的体系是固定的 P ( h i ) = P ( h j ) P(h_i)=P(h_j) P(hi)=P(hj),
所以, h M L = a r g max ⁡ h ∈ H P ( D ∣ h i ) h_{ML}=arg\max_{h\in H}P(D|h_i) hML=argmaxhHP(Dhi)

BRUTE-FORCE 算法

  1. 计算每一个 h ∈ H h\in H hH的后验概率
  2. 选择最大的后验概率对应的h
    此算法需要较大的计算量
    例子
    已知
    P(癌症)=0.008, P(非癌症)=0.992
    P(结果为阳性|癌症)=0.98,P(结果为阴性|癌症)=0.02
    P(结果为阳性|非癌症=0.03, P(结果为阴性|费癌症=0.97
    P ( 癌 症 ∣ 阳 性 ) = P ( + ∣ K r e b s ) P ( K r e b s ) P ( + ) = P ( + ∣ K r e b s ) P ( K r e b s ) P ( + ∣ K r e b s ) P ( K r e b s ) + P ( + ∣ ! K r e b s ) P ( ! K r e b s ) = 0.98 ∗ 0.008 / ( 0.98 ∗ 0.008 + 0.03 ∗ 0.992 ) = 0.21 P(癌症|阳性)=\frac{P(+|Krebs)P(Krebs)}{P(+)} =\frac{P(+|Krebs)P(Krebs)}{P(+|Krebs)P(Krebs)+P(+|!Krebs)P(!Krebs)}=0.98*0.008/(0.98*0.008+0.03*0.992)=0.21 P(=P(+)P(+Krebs)P(Krebs)=P(+Krebs)P(Krebs)+P(+!Krebs)P(!Krebs)P(+Krebs)P(Krebs)=0.980.008/(0.980.008+0.030.992)=0.21
    这个是求的后验概率,病人有病的可能
    h M A P = a r g max ⁡ h ∈ { K r e b s , ! K r e b s } { P ( + ∣ K r e b s ) P ( K r e b s ) , P ( + ∣ ! K r e b s ) P ( ! K r e b s ) } = a r g max ⁡ h ∈ { K r e b s , ! K r e b s } { 0.0078 , 0.0298 } , − > h M A P = ! K r e b s h_{MAP}=arg\max_{h\in \{Krebs,!Krebs\}}\{P(+|Krebs)P(Krebs),P(+|!Krebs)P(!Krebs)\}=arg\max_{h\in \{Krebs,!Krebs\}}\{0.0078,0.0298\},->h_{MAP}=!Krebs hMAP=argh{Krebs,!Krebs}max{P(+Krebs)P(Krebs),P(+!Krebs)P(!Krebs)}=argh{Krebs,!Krebs}max{0.0078,0.0298},>hMAP=!Krebs
    这个是正确解法,判断病人没有癌症
    当没有学习的时候对于h的估计如最左,当不断的增加数据的时候,就越来越向右变化,直至接近唯一假设
    在这里插入图片描述
    可以用ml来估计目标方程,但是在训练模型的时候是考虑到了噪声,但是测量的时候却没有考虑噪声

optimaler bayes-Klassifikator(贝叶斯最优分类器)

每个假设等概率叠加
v O B = a r g max ⁡ v j ∈ V ∑ h i ∈ H P ( v j ∣ h i ) P ( h i ∣ D ) v_OB=arg\max_{v_j\in V}\sum_{h_i\in H}P(v_j|h_i)P(h_i|D) vOB=argmaxvjVhiHP(vjhi)P(hiD)
改进gibbs
按照当前D的后验概率来组合假设,误分类率的期望是最优的两倍

naiver Bayes-Klassifikator(朴素贝叶斯分类器)

不考虑各个属性的相关性。
在这里插入图片描述
分别计算这一情况下去和不去的概率。
由于有一些属性概率是0,导致相乘的时候影响其他属性,所以要统一分子分母加拉普拉斯估计
他在文章分类上的研究,统计文章分类的关键字,去除常见字以及出现次数较少的字,确定用户喜欢的话题和讨厌的话题,每天推荐用户评分前10%,今日头条是这个原理么?

bayessche Netze(贝叶斯信念网)

考虑属性间的相关性
对于两个属性影响结果的可能变成了4种
贝叶斯网络的学习:
结构已知,所有变量都可观察:naiven Bayes-Klassifikator
结构已知,少量变量可观察:梯度上升,EM
结构未知:启发式过程

EM算法

高斯混合分布算法
一. Initialisierung 随机选h和μ
二. E [ z i j ] = P ( x = x i ∣ μ = μ j ) ∑ n = 1 2 P ( x = x i ∣ μ = μ n ) = e − 1 2 δ 2 ( x i − μ j ) 2 ∑ n = 1 2 e − 1 2 δ 2 ( x i − μ 2 ) 2 E[z_{ij}]=\frac{P(x=x_i|\mu=\mu_j)}{\sum_{n=1}^2P(x=x_i|\mu=\mu_n)}=\frac{e^{-\frac{1}{2\delta^2}(x_i-\mu_j)^2}}{\sum_{n=1}^2e^{-\frac{1}{2\delta^2}(x_i-\mu_2)^2}} E[zij]=n=12P(x=xiμ=μn)P(x=xiμ=μj)=n=12e2δ21(xiμ2)2e2δ21(xiμj)2
三. μ j ′ = 1 m ∑ i = 1 m E [ z i j ] x i \mu_j^{'}=\frac{1}{m}\sum_{i=1}^mE[z_{ij}]x_i μj=m1i=1mE[zij]xi
一般EM算法

  1. Q ( h ′ ∣ h ) = E [ l n P ( Y ∣ h ′ ) ∣ X , h ) Q(h'|h)=E[lnP(Y|h')|X,h) Q(hh)=E[lnP(Yh)X,h)
  2. E: P(Y|X,h)
  3. h ′ = a r g max ⁡ h ′ Q h'=arg\max_{h'}Q h=argmaxhQ
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值