理解 Bayes optimal error 贝叶斯最优误差

本文深入探讨了贝叶斯最优误差的概念,解释了其在已知真实分布前提下的意义及应用,并讨论了如何将其作为衡量机器学习模型性能的基准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近学习ML项目构建的时候涉及到“极限模型”的问题,其中谈到贝叶斯最优误差即系统所能达到的最低误差,那么贝叶斯误差是什么呢?在看过一些资料后,以下是我的总结以及一些个人想法:


  • 贝叶斯最优误差是已知真实分布前提下的最优误差

这里可能产生的疑问:既然已知了真实的分布,那么为什么会有误差呢?
需要注意的,贝叶斯最优误差针对的是“分类问题”,即给出确切的类别而并非给出一个分布。事实上,如果我们需要给出的是一个分布那么在已知的前提下当然是不可能存在误差的。举一个例子:在气象预测系统中,假设我们已知真实分布
一周中出现的下雨的可能性为99%,不下雨的可能性为1%(假设这是真实分布,绝对正确),问:下周是否会下雨?
这里就可以发现,即使我们已知真实分布,但是在面对确定性预测问题时我们同样可能出现错误:假设预测下周会下雨,那么下周仍然可能有1%的几率不下雨,这就是贝叶斯最优误差,是理论上可能出现的最低误差。


  • 贝叶斯误差表征了数据力量的极限

解释一下上面这段话的意思:数据的力量是有限的,贝叶斯最优误差对应了“拥有无限真实准确数据时我们能够从数据中汲取出的有效信息的极限”。事实上,我们利用数据进行预测,就是基于已知数据进行数据分布的预测,而贝叶斯最优误差是在已知分布的前提下进行的,这显然是一种极限状态,且要求我们能够利用现有数据推测出真实分布,这显然已经是极其困难甚至是无法预知和实现的。


说了这么多,贝叶斯最优误差究竟有什么用呢?
从上面的论述中我们已经知道:贝叶斯误差是理想误差,但是我们不可能事先已知真实分布,否则将没有进行机器学习的必要。因此工业项目中不会直接将贝叶斯最优误差作为模型的评价指标(无法得知的标准),那么贝叶斯估计在机器学习项目构建中体现在什么方面呢?
我想大家常听见一句话:这个模型已经和人类水平相当了!
是的,贝叶斯最优误差在机器学习项目中常常映射在“人类水平”上。对于一些问题,人类水平和贝叶斯误差相去不远(但是始终低于贝叶斯最优估计),如:图片内容识别与分类系统人类往往能够以高准确率识别出一张图片中的内容或含义。因此一些机器学习项目中我们常将人类水平作为模型评价标准。


一点补充:

  • 如果机器项目已经和人类水平相当,那么接下来的提升将很缓慢,这是很好理解的,越接近贝叶斯最有误差,就难以更进一步。
  • 为了接近人类水平,往往可以通过人类指导的方式对模型进行修正,例如找出错误分类样本,通过人类分析除可能的原因以指导改进方向。
  • 如果你的机器学习项目和人类水平相当,那么基本没有必要收集更多的数据以期望能够更进一步地提升模型水平。从上面的论述中有讲到到:贝叶斯最优估计体现了数据的极限,再收集更多的数据也不可能超过这个水平了。

最后补充大神Andrew Ng的推荐解决方案:
在这里插入图片描述


参考:
贝叶斯误差理解
机器学习中,什么是贝叶斯估计?

### KNN、朴素贝叶斯和决策树分类算法特点 KNN是一种基于实例的学习方法,其核心假设是相似的数据点具有相似的输出[^1]。该算法通过计算测试样本与其最近邻样本的距离来决定类别归属。 朴素贝叶斯分类器基于贝叶斯定理构建,它假定特征之间相互独立。尽管这一假设在实际应用中可能不完全成立,但在许多场景下仍能提供良好的性能。 决策树是一种分层结构模型,能够通过对数据集进行递归划分形成一棵树状结构[^3]。它的优点在于易于理解和解释,同时支持多种类型的输入变量。 以下是使用 `scikit-learn` 实现上述三种算法对鸢尾花数据集 (`Iris`) 进行分类的具体代码示例: --- ### 数据预处理 加载并分割 Iris 数据集: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import numpy as np # 加载数据集 data = load_iris() X, y = data.data, data.target # 划分训练集与测试集 (80% 训练, 20% 测试) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` --- ### 使用 KNN 算法 定义模型并通过交叉验证优化超参数 \( k \) 的取值范围: ```python from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt k_values = range(1, 21) accuracies = [] for k in k_values: knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) predictions = knn.predict(X_test) accuracies.append(accuracy_score(y_test, predictions)) # 可视化不同 k 值下的准确性 plt.figure(figsize=(8, 5)) plt.plot(k_values, accuracies, marker='o') plt.title('Accuracy vs Number of Neighbors (K)') plt.xlabel('Number of Neighbors (K)') plt.ylabel('Testing Accuracy') plt.show() best_k = k_values[np.argmax(accuracies)] print(f"最佳 K 值: {best_k}") ``` 最终选定的最佳 \( k \) 值用于重新训练模型,并计算错误率: ```python optimal_knn = KNeighborsClassifier(n_neighbors=best_k) optimal_knn.fit(X_train, y_train) y_pred_knn = optimal_knn.predict(X_test) error_rate_knn = 1 - accuracy_score(y_test, y_pred_knn) print(f"KNN 错误率: {error_rate_knn:.4f}") ``` --- ### 使用朴素贝叶斯算法 朴素贝叶斯无需复杂的调参过程,直接拟合即可: ```python from sklearn.naive_bayes import GaussianNB nb_model = GaussianNB() nb_model.fit(X_train, y_train) y_pred_nb = nb_model.predict(X_test) error_rate_nb = 1 - accuracy_score(y_test, y_pred_nb) print(f"朴素贝叶斯错误率: {error_rate_nb:.4f}") ``` --- ### 使用决策树算法 调整最大深度以防止过拟合: ```python from sklearn.tree import DecisionTreeClassifier from sklearn.tree import plot_tree tree_depths = range(1, 11) accuracies_tree = [] for depth in tree_depths: dt = DecisionTreeClassifier(max_depth=depth, random_state=42) dt.fit(X_train, y_train) predictions = dt.predict(X_test) accuracies_tree.append(accuracy_score(y_test, predictions)) # 绘制准确率随深度变化的趋势图 plt.figure(figsize=(8, 5)) plt.plot(tree_depths, accuracies_tree, marker='o', color='green') plt.title('Accuracy vs Tree Depth') plt.xlabel('Max Depth') plt.ylabel('Testing Accuracy') plt.show() best_depth = tree_depths[np.argmax(accuracies_tree)] print(f"最佳树深度: {best_depth}") # 使用最佳深度重训模型 final_dt = DecisionTreeClassifier(max_depth=best_depth, random_state=42) final_dt.fit(X_train, y_train) y_pred_dt = final_dt.predict(X_test) error_rate_dt = 1 - accuracy_score(y_test, y_pred_dt) print(f"决策树错误率: {error_rate_dt:.4f}") # 可视化决策树结构 plt.figure(figsize=(12, 8)) plot_tree(final_dt, filled=True, feature_names=data.feature_names, class_names=data.target_names) plt.show() ``` --- ### 总结 以上展示了如何利用 `scikit-learn` 对鸢尾花数据集分别采用 KNN、朴素贝叶斯和决策树分类算法完成建模、参数调整及结果可视化的过程。每种算法均提供了相应的错误率指标以便比较性能差异。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PinkGranite

图个吉利,欢迎私信提问

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值